ответ: у Винни-Пуха вначале было 14 шариков, у Совы - 26, а у Пятачка - 50
Пошаговое решение:
Подобные задачи удобно решать с конца. Получаем следующую цепочку: итоговое распределение было 30; 30; 30 (здесь и далее первое число - количество шариков у Винни-Пуха, второе - у Совы, третье - у Пятачка); перед этим Пятачок отдал половину своих шариков плюс еще шарик, т. е. у него было 2*(30+1) = 62 шарика. Он отдал каждому 62/4 + 1/2 = 16 штук. Значмт, перед тем, как он начал раздавать шарики, распределение было: 14; 14; 62; перед раздачей Совы: 6; 30;54, она раздала 16 шариков; перед раздачей Винни: 14; 26; 50, он раздал 8 шариков. Иначе говоря,
(1) a^20
(2) b^30
(3) c^4
(4) d^30 (
5) c^5 (6)
k^84
(^ - знак степени)
Пошаговое объяснение:
Правило один: Если степень возводится в другую степень, то они перемножаются.
Пример: (a^2)^2 = a^4
Правило два: Если число в одной степени умножается на другое число в другой степени, то числа перемножаются , а степени складываются.
Пример: a^4 × a^4 = a^8
Правило три: Если число в одной степени делится на другое число в другой степени, то числа делятся, а степени вычитаются.
Пример: a^7 : a^4 = a^3
(2^2 : 1^2 = 4 : 1 = 4)
=8х^4y^4-9x^3y^8+10z^6