Даны точки A(4; 8), B(6; 9), C(2; 12) как вершины треугольника.
Найти угол треугольника можно двумя :
-1) векторным,
-2) по теореме косинусов.
1) Вектор ВА = (4-6; 8-9) = (-2; -1), его модуль (длина) |AB| = √((-2)² + (-1)²) = √5.
Вектор ВС = (2-6; 12-9) = (-4; 3), его модуль (длина) |AC| = √((-4)² + 3²) = √25 = 5.
cos(ВА_ВC) = ((-2)*(-4) + (-1)*3)/(√5*5) = 5/(5*√5) = √5/5 ≈ 0,4472.
B = arccos 0,44721 = 1,1072 радиан или 63,435 градуса.
2) По разности координат находим длины сторон.
Расчет длин сторон
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √5 ≈ 2,2361.
BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √25 = 5.
AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = √20 ≈ 4,4721.
Находим косинус угла В.
cos В = (5 + 25 - 20) / (2*5*√5) = 10/(2*5*√5) = 1/√5 = 0,4472.
B = arccos 0,44721 = 1,1072 радиан или 63,435 градуса.
Даны точки A(4; 8), B(6; 9), C(2; 12) как вершины треугольника.
Найти угол треугольника можно двумя :
-1) векторным,
-2) по теореме косинусов.
1) Вектор ВА = (4-6; 8-9) = (-2; -1), его модуль (длина) |AB| = √((-2)² + (-1)²) = √5.
Вектор ВС = (2-6; 12-9) = (-4; 3), его модуль (длина) |AC| = √((-4)² + 3²) = √25 = 5.
cos(ВА_ВC) = ((-2)*(-4) + (-1)*3)/(√5*5) = 5/(5*√5) = √5/5 ≈ 0,4472.
B = arccos 0,44721 = 1,1072 радиан или 63,435 градуса.
2) По разности координат находим длины сторон.
Расчет длин сторон
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √5 ≈ 2,2361.
BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √25 = 5.
AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = √20 ≈ 4,4721.
Находим косинус угла В.
cos В = (5 + 25 - 20) / (2*5*√5) = 10/(2*5*√5) = 1/√5 = 0,4472.
B = arccos 0,44721 = 1,1072 радиан или 63,435 градуса.
Допустим, уменьшаемое равно 40, его увеличили на 2, получилось 42. Примем вычитаемое за 25, первоначальная разность равна 15.
Таким образом, чтобы разность уменьшилась на 12, нужно вычитаемое увеличить на 12. Проверка:
40 - 25 = 15
1) 42 - (25+12) = 15-12
42 - 37 = 3
2) 42 - (25+6) = 15-6
42 - 31 = 9
3) 42 - (25+2) = 15-2
42 - 27 = 13