1) Длина стороны ВС равна √((Xc-Xb)²+(Yc-Yb)²) = √((17-1)²+(2-0)²) =
= √(16²+2²) = √(256+4) = √260 = 2√65 = 16.1245.
Аналогично находим длину стороны АВ = 5, и АС = 13.
2) Площадь S = (1/2)*|(Xb-Xc)*(Yc-Ya)-(Xc-Xa)*(Yb-Ya)| =
= (1/2)*|(1-5)*(2-(-3))-(17-5)*(0-(-3))| = (1/2)*|-4*5-12*3| =(1/2)|-56| = 28.
3) Уравнение стороны ВС:
(X-Xb)/(Xc-Xb) = (Y-Yb)/(Yc-Yb)
(X-1)/(17-1) = (Y-0)/(2-0)
(X-1)/16 = Y/2
X-8Y-1=0 или с коэффициентом: У = (1/8)X - (1/8).
4) Уравнение высоты из вершины А:
(Х-Xa)/(Yc-Yb) = (Y-Ya)/(Xb-Xc)
(X-5)/(2-0) = (Y-(-3))/(1-17)
(X-5)/2 = (Y+3)/-16
8X+Y-37=0 или Y = -8X+37.
Аналогично находим уравнения высоты из вершины В:
12Х+5У-12=0,
и из вершины С:
4Х-3У-62=0.
5) Высота из вершина А равна Ha = 2S/BC = 2*28 / 2√65 = 3,473.
Из вершины В: Нв = 2*28 / 13 = 4,308.
Из вершины С: Нс = 2*28 / 5 = 11,2.
6) Косинус угла В: cosB = (AB²+BC²-AC²) / (2*AB*BC) =
= (5²+(2√65)²-13²) / (2*5*2√65) = 116/20√65 =
0.7194
Угол В = 0.76786 радиан =
43.9949 градуса.
Пошаговое объяснение:
Среднее арифметическое трёх чисел равно 1,54.
Первое число больше второго числа в 2 раз.
Третье число меньше второго на 0,18.
Найди первое, второе и третье число.
Решение.
Средним арифметическим нескольких чисел называют частное от деления суммы этих чисел на количество слагаемых.
Пусть третье число равно х.
Тогда второе число равно (х +0,18).
Первое число равно ((х +0,18) * 2).
Зная, что среднее арифметическое трёх чисел равно 1,54 - составим уравнение:
(((х +0,18) * 2) + (х +0,18) + х) : 3 = 1,54
((х +0,18) * 2 + х +0,18 + х) : 3 = 1,54
(2х + 0,36 + х + 0,18 + х) : 3 = 1,54
(4х + 0,54) : 3 = 1,54
4х + 0,54 = 1,54 *3
4х + 0,54= 4,62
4х = 4,62 – 0,54
4х = 4,08
х = 4,08 : 4
х = 1,02
Третье число равно 1,02
Второе число равно 1,02 + 0,18 = 1,2
Первое число равно 1,2 * 2 = 2,4
Проверка:
(2,4 + 1,2 + 1,02) : 3 = 4,62 : 3 = 1,54
Первое число равно 2,4
Второе число равно 1,2
Третье число равно 1,02
Бабушка - 84 года
Камола - ? в 21 раз младше бабушки.
Мама - 42 года
1) 84:21=4 (г) - возраст Камолы
2) 84:42=2(р)
ответ: 1)4 года; 2)в 2 раза.