Рациональное число - это дробь с целым числителем и натуральным знаменателем.
Пусть существует несократимая (это важно) дробь m/n = √5. Очевидно, что так как n>0, то и m>0
Проведем цепочку рассуждений
1) m²/n² = 5 m² = 5n²
2) Итак, мы видим, что m² делится на 5. Так как число 5 - простое, мы понимаем, что m тоже должно делиться на 5. Почему так? Если в разложении m на простые множители отсутствует 5, то и в m² не будет 5
3) Итак, m делится на 5, значит m² делится на 25, то есть m² = 25p, где p-целое
4) Итак, m² = 5n² = 25p n² = 5p
Мы видим, что n² тоже делится на 5, а значит, n тоже делится на 5
5) И мы получаем, что m и n должны делиться на 5. Но это противоречит исходному предположению о несократимости дроби m/n
Значит, не существует такой рациональной дроби m/n, которая равнялась бы корню из 5
Если на чашки весов влезает 20 кг абрикос, то: Делим ящик на две части и уравновешиваем их на чашках весов. Получаем 2 раза по 20 кг. Одну часть откладываем в сторону, делим вторую часть еще на две части, уравновешивая их на весах. Получаем 2 по 10 кг. 10 кг откладываем, вторые 10 кг снова весами делим пополам. Получаем 2 по 5 кг. Откладываем обе части по 5 кг. На весы кладем отложенные 10 кг и из второго ящика отмеряем еще 10 на вторую чашку весов. Таким образом, мы отмерили следующее количество абрикосов: 20 кг; 2 по 10 кг и 2 по 5 кг Теперь нетрудно получить искомое количество абрикосов: 20 + 10 + 5 = 35 (кг) 10 + 5 = 15 (кг)
решение в прикрепленном файле