1. дано множество чисел а: а = {2,5; – 3; 0; 1,8 ; - 0,4; 3 1 5 ; 2} выделите из множества а подмножества: в – натуральных чисел, с – целых чисел и d – рациональных чисел. постройте диаграмму эйлера венна для множеств в, с и d и отметьте на ней элементы множества а. скажите 10
Р(А) = m ÷ n
Р(А) – вероятность события А,
m – число благоприятствующих исходов этому событию,
n – число всевозможных исходов.
Значит, А - момент когда выпадет 9 очков.
Тогда, Р(А) - вероятность того, что выпадет 9 очков.
Нужно найти все сочетания чисел, при которых может в сумме получиться 9: 162, 126, 216, 423, 144, 414, 441, 333, 315, 252, 225, 234, 621, 243, 342, 432, 261, 135, 315, 522, 531, 351, 513, 612, 324.
Это кол-во наших вариантов, 25.
Значит, m = 25.
Так как n - количество всех возможных комбинаций при выбрасе кубиков, то:
n = 6×6×6 = 216
Найдем вероятность:
Р(А) = m ÷ n = 25 ÷ 216 ≈ 0.116
ответ: Р(А) ≈ 0.116