2) KL² =NL*LM² NL =x LM=MN -NL =25 -x;
144 =x(25 -x) ;
x² -25x +144 =0;
x = 9
x=16 (по рисунку NL < LM )
ΔKLN : NK² =NL²+ LK²
NK =3*5 =15 (9 =3*3; 12=3*4; 3*5=15)..
ΔKLM : KM² =KL² +LM²
KM =4*5 =20 (12 =4*3; 16=4*4 ;4*5 =20)
3) KE² =EM*EL
EM =KE²/EL =6²/8 =9/2 =4,5
KL² =KE² +EL² =6² +8² =100 =10²
KL =10.
KL² =ML*EL
ML =KL²/EL =100/8 =12,5.;
( 5/EM = ML --EL =12,5 -8 =4,5)
MK² =ML*ME;
MK² =12,5*4,5 =25*0,5*0,5*9;
MK =5*0,5*3 =7,5.
4) MN² =MK² +KN² =5² +²12² =25 +144 =169 =13²;
MN =13;
MK² =MN*MT ;
MT =MK²/MN=5²/13 =25/13.
NT =MN -MT =13 -25/13 =144/13;
KT² =MT*NT=25/13*144/13 =(5*12/13)² ;
KT =5*12/13 =60/13.
или из ΔMTK :
KT² =MK² -MT²² =5² -(25/13)² =(5 -25/13)(5+25/13) =40/13*90/13 =(2*3*10/13)²;
KT =2*3*10/13 =60/13 .
1) длина стороны ab считается по формуле √((x₂-x₁)²+(y₂-y₁)²)
подставлять надо координаты точек a (x₁=-2, y₁=1) и b (x₂=6, y₂=-5)
2) уравнение прямой через две точки в общем виде
(y-y₁)(x₂-x₁)=(x-x₁)(y₂-y₁)
подставляешь те же координаты точек находишь уравнение (для прямой ab)
8(y-1)=6(x+2)
раскрываешь скобки и выражаешь y
y=(6x+20)/8=3/4 x + 5/2
угловой коэффициент это коэффициент k в уравнении прямой в виде y=k x+b
для стороны ab: y = 3/4 x + 5/2, угловой коэффициент (при x) k = 3/4
для ac всё аналогично
3) медиана, проведенная из вершины a проходит через точку a и середину d противоположной стороны bc
координаты середины отрезка находятся по формулам
x=(x₁+x₂)/2, y=(y₁+y₂)/2
для нахождения координат точки d нужно подставлять в формулы координаты точек b(x₁=6, y₁=-5) и с (x₂=8, y₂=4)
когда координаты точки d найдены, уравнение медианы ad составляем по двум точкам a и d тем же методом, что использован для составления уравнения стороны ab
аналогично составляется уравнение медианы be
точка пересечения медиан является общей точкой медиан, поэтому её координаты — решение системы уравнений, в которую входят уравнения двух медиан.
то есть пишем уравнения медиан ad и be и решаем как систему, найденное решение и есть координаты точки пересечения медиан
4) чтобы найти угол в вершине, можно использовать теорему косинусов или скалярное произведение векторов ab·ac
cos(a)=(ab·ac)/(|ab||ac|)
5) чтобы составить уравнение высоты ct, нужно учесть, что она проходит через c и перпендикулярна прямой ab
ab: y = 3/4 x + 5/2
угловой коэффициент перпендикулярной прямой будет -1/k=-1/(3/4)=-4/3
значит уравнение прямой ct имеет вид y = -4/3 x + b
чтобы найти значение свободного члена b в уравнении этой прямой используем то, что она проходит через c
4 = -4/3 · 8 + b, отсюда находим b
6) координаты точки t находятся как координаты точки пересечения прямых ct и ab (из системы уравнений этих двух прямых)
так как at⊥ct, то точка m это такая точка, что точка t является серединой отрезка am
отсюда можно найти координаты точки m через формулы координаты середины отрезка.
я всё сказал, но если нужны пояснения всегда есть возможность добавить комментарий или обратиться письмом.