Элементарно! чтобы число делилось на 16 последние 4 цифры должны делиться на 16. Значит, необходимо посчитать для начала общее количество четырёхзначных чисел которые делятся на 16 у которых 2 и 3 цифра "16", а затем умножить на 9 так как таких комбинаций среди пятизнычных чисел 9, х меняется от 1 до 9. Давайте считать, что это искомое число обязано делиться на 4, что очевидно. тогда 6z должно делиться на 4 таких вариантов только 60 64 и 68 z может принимать значения только 0 4 и 8. Значит числа которые мы ищем должны выглядеть так y160 или у164 или у168 необходимо проверить только 27 вариантов Чтобы закончить решение задачи, я это сделаю, выпишу только удовлетворяющие числа: 2160 4160 6160 8160 1168 3168 5168 7168 9168 тоесть 9 чисел. Тогда среди 5-значных чисел которые делятся на 16 без остатка 81 ответ:81
Согласно признака делимости на 3, число делится на 3 его сумма цифр из которого оно состоит кратно 3. 2+7+*+2=11+* 11 уже есть, поэтому подбираем все цифры от 1 до 9 и смотрим какое число делится на 3 11+1=12 12:3=4 ⇒ 2712 11+2=13 - не делится на 3 11+3=14 - не делится на 3 11+4=15 15:3=5 ⇒ 2752 11+5=16 - не делится на 3 11+6=17 - не делится на 3 11+7=18 18:3=6 ⇒ 2772 11+8=19 - не делится на 3 11+9=20 - не делится на 3 Получается вместо звёздочки можно записать только три числа: 1, 4 и 7. Сумма этих чисел 1+4+7=12
Число делится на 6 если оно одновременно делится на 2 и на 3. 12:6=2
32
Пошаговое объяснение:
Воспользуемся следующими свойствами степени с натуральным показателем (n∈N, m∈N, k∈N):
(2⁴·2⁵)⁵/(2·2⁹)⁴=(2⁴⁺⁵)⁵/(2¹⁺⁹)⁴=(2⁹)⁵/(2¹⁰)⁴=
=2⁴⁵/2⁴⁰=2⁴⁵⁻⁴⁰=2⁵=32