Zadanie 4 (Задание 4)
Найдите количество деревьев на n вершинах, в которых степень каждой вершины не больше 2.
n=1 => дерево состоит из одной вершины степени 0.
n>=2 => 1] Вершины степени 0 быть не может (иначе граф несвязный). Значит степень вершин либо 1, либо 2. 2] существует простая цепь, являющаяся подграфом дерева.
Тогда будем достраивать дерево из цепи. Ребро - простая цепь.
Алгоритм:
Изначально есть ребро <u,v>. Степени концов цепи - вершин u и v - равны 1.
Если на данном шаге число вершин в графе равно n - получен один из искомых графов, больше его не изменяем.
Если же число вершин < n, добавляем ребро.
На 1ом шаге мы можем добавить либо ребро <u,a>, либо ребро <a,v>. Без нарушения общности, добавим <u,a>. У нас все еще простая цепь. При этом у концов a и v степень 1, а у всех остальных вершин, здесь это вершина u, - 2, и к ним ребра присоединить уже нельзя. Повторяя подобные операции, будем получать на каждом шаге простую цепь.
На n вершинах можно построить ровно одну простую цепь. А значит и число искомых деревьев равно 1 .
Zadanie 5 (Задание 5)
Покажите, что для графа G=[V,E] с k компонентами связности верно неравенство 
Введем обозначения 
Разобьем граф на компоненты связности. Для каждой компоненты, очевидно, верно неравенство
. Просуммировав неравенства для каждой из k компонент, получим
.
Оценка снизу получена.
Лемма: Граф имеет максимальное число ребер, если он имеет k-1 тривиальную компоненту связности и 1 компоненту, являющуюся полным графом. И действительно. Пусть
– компоненты связности,
. Тогда при "переносе" одной вершины из
в
число ребер увеличится на
– а значит такая "конфигурация" неоптимальная, и несколькими преобразованиями сводится к указанной в лемме. А тогда максимальное число ребер в графе равно
Оценка сверху получена.
Zadanie 6 (Задание 6)
Проверьте, являются ли следующие последовательности графическими, обоснуйте ответ
Решение в приложении к ответу
Возведём в квадрат, получим:
x+1 + 2
+ x - 3 = 3x + 4
2
= x + 6
Снова возведём в квадрат, получим:
4 * (x^2 - 2x - 3) = x^2 + 12x + 36
4x^2 - 8x - 12 = x^2 + 12x + 36
3x^2 - 20x - 48 = 0
D/4 = 100 + 144 = 244
x1 = (10 +
)/3
x2 = (10 -
)/3
Так как x >= -1, x >=3 и x >= -3/4, то корень x2 не подходит, так как меньше чем -1, следовательно, ответ: