При подстановке 0 получается 0^2*cos0/sin0, что не определено. Тогда по правилу Лопиталя берем производную от числителя и знаменателя отдельно: (x^2*cosx)'/sin'x=(2x*cosx + x^2*(-sinx))/cosx = (2xcosx -x^2sinx)/cosx.
теперь берем предел снова: (2*0*cos0 - 0^2 * sin0)/cos0 = (0 - 0)/1 = 0
распределительный закон умножения позволяет умножить сумму на число. само слово «распределительное» говорит за себя — распределять.
рассмотрим пример. допустим перед нами найти значение следующего выражения:
(3 + 5) × 2
мы знаем, что сначала надо выполнить действие в скобках. выполняем:
(3 + 5) = 8
теперь меняем скобку на нашу полученную восьмёрку:
(3 + 5) × 2
8 × 2 = 16
получили ответ 16. этот же пример можно решить с распределительного свойства умножения. для этого, каждое слагаемое, которое в скобках умножаем на 2, и полученные результаты сложим:
(3 + 5) × 2
3 × 2 = 6
5 × 2 = 10
10 + 6 = 16
оба способа дали один и тот же ответ. второй способ, который мы сейчас рассмотрели — это и есть распределительное свойство умножения. только мы рассмотрели его развёрнуто и подробно. в школе этот пример записали бы коротко. к такой записи тоже надо привыкать. выглядит она вот так:
(3 + 5) × 2 = 3 × 2 + 5 × 2 = 6 + 10 = 16
lim x^{2} ctg2x\ sin3x [sin3x]=lim x^{2}ctg2x\3x= lim x ctg2x\3=1\3 lim x ·
x ⇒0 x⇒0 x⇒0 x⇒0
cos2x\sin2x=1\3 lim x· cos2x\sin2x · 2x\2x=1\3 lim 1\2 cos2x=1\6 lim cos2x=1\6
x⇒0 x⇒0 x⇒0
Подробнее - на -