Пусть мальчик прожил x лет и еще y месяцев. Тогда он прожил всего 12x+y месяцев и поэтому
Поскольку С>Р, С>1. Так как мы ищем наименьшее число, попробуем взять Р=1, С=2 и Е=0. Тогда М>3. Случай СЕЕМ=2003 возможен: 35+1968=2003 или 38+1965=2003.
Кроме указанных решений, ребус, как легко проверить при компьютерной программы, имеет еще 38 решений:
ответ: 69
Пошаговое объяснение:Если среди 85 найдутся деревья 4 вида деревьев - то есть каждого дерева минимум по 16 экземпляров, иначе исключим эти деревья - и получится 85 деревьев 3-х видов.
Это верно.
Теперь отнимем из 85 16 - получится 69, это и есть минимальное количество, среди которого найдётся деревья 3-х видов.
1) Необходимость. Докажем, что меньше нельзя. Например, 68 деревьев. Очевидно, что распределение 34-34-16-16 удовлетворяет исходному условию (среди 85 есть все 4 вида), а взяв первые два вида, получим 68 деревьев. То есть, 68 не является достаточным набором.
2) Достаточность. Предположим, что мы взяли 69 деревьев и они оказались только двух видов. Из оставшихся 31 деревьев деревья оставшихся двух видов(например, 3-й вид и 4-й), хотя бы один встречается в количестве меньшем, либо равном 15 (если оба встречаются 16 и более раз, то получается оставшихся деревьев не менее 32). Возьмём вид, встречающийся в количестве меньшем, чем 15 раз - например, это вид 4. Теперь соберём все деревья, кроме 4-го вида - их будет 100 минус вид 4, то есть не менее 85, что противоречит условию задачи.
Итого - 69 - необходимое и достаточное число.
х+78=33+67=100
х=100-78=22
б)57-(х-34)=28
х-34=57-28=29
х=29+34=63