М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Bereke2006
Bereke2006
16.06.2020 23:14 •  Математика

301 целая 367/540-277 целых 31/! заранее )

👇
Ответ:
\frac{162907}{540} - \frac{16651}{60} = \frac{162907}{540} - \frac{149859}{540} = \frac{13048}{540} = \frac{3262}{135} =24 \frac{22}{135}
4,8(38 оценок)
Открыть все ответы
Ответ:
BN6573
BN6573
16.06.2020
Яблоки Бориса: (11;15)
Яблоки Марата: (9;13)

Если сложить яблоки Бориса и Марата и разделить их на 4 (Марат+Борис+друг1+друг2), то получится целое число.

Итак, возможные варианты количества яблок:
У Бориса 12,13,14
У Марата 10,11,12

Теперь будем методом "веера" складывать яблоки Бориса и Марата и получим ответ:
12+10=22 (не делится на 4)
12+11=23  (не делится на 4)
12+12=24 (делится на 4, ответ 6)

13+10=23  (не делится на 4)
13+11=24 (делится на 4, ответ 6)
13+12=25 (не делится на 4)

14+10=24 (делится на 4, ответ 6)
14+11=25 (не делится на 4)
14+12=26 (не делится на 4)

В результате имеем следующие возможные количества яблок у обоих мльчиков
Борис     Марат
  12           12
  13           11
  14           10
4,4(31 оценок)
Ответ:
polinakomarova3
polinakomarova3
16.06.2020
Это уравнение является уравнением Бернулли.
Очевидно, что функция y = 0 является решением уравнения. Разделим обе части на y^2, предполагая, что y \neq 0:
(1+x^2) \frac{y'}{y^2} + \frac{1}{y} = arctgx.
Сделаем замену \frac{1}{y} = z, тогда z' = -\frac{y'}{y^2} и уравнение принимает вид
-(1+x^2)z' + z = arctgx.
Получили линейное неоднородное уравнение. Решим его методом вариации постоянной. Для этого найдем решение соответствующего однородного уравнения:
-(1+x^2)z' + z = 0 \Leftrightarrow (1+x^2)z' - z = 0.
Это уравнение с разделяющимися переменными.
(1+x^2) \frac{dz}{dx} - z = 0 \\ \frac{dz}{z} = \frac{dx}{1+x^2} \\ \int \frac{dz}{z} = \int \frac{dx}{1+x^2} \\ lnz = arctgx + C \\ z = Ce^{arctgx}.
Заменим постоянную C новой неизвестной функцией C(x) и в таком виде будем искать решение неоднородного уравнения:
z = C(x)e^{arctgx} \\ (1+x^2)(C(x)e^{arctgx})' + C(x)e^{arctgx} = -arctgx \\ (1+x^2)C'(x)e^{arctgx} + C(x)e^{arctgx} - C(x)e^{arctgx} = -arctgx \\ (1+x^2)C'(x)e^{arctgx} = -arctgx \\ C'(x)=-\frac{e^{-arctgx}arctgx}{1+x^2} \\ C(x) = -\int\frac{e^{-arctgx}arctgx}{1+x^2}dx.
Сделаем замену в интеграле:
t = arctgx\\ C(x) =-\int\frac{e^{-arctgx}arctgx}{1+x^2}dx = -\int te^{-t}dt.
Интеграл легко берется по частям (оставляю на вас):
C(x) = (t+1)e^{-t} + C = (arctgx+1)e^{-arctgx} + C, где C - произвольная постоянная.
Таким образом, 
z = C(x)e^{arctgx} = ((arctgx+1)e^{-arctgx} + C)e^{arctgx} = Ce^{arctgx}+arctgx + 1.
Вспоминаем, что \frac{1}{y} = z, тогда 
y = \frac{1}{Ce^{arctgx}+arctgx+1} - общее решение.
Теперь воспользуемся начальным условием y(0) = 1:
\frac{1}{Ce^{arctgx} + arctgx + 1} = 1\\ \frac{1}{Ce^{arctg0} + arctg0 + 1} = 1 \\ C = 0.
Значит, искомая функция есть 
y = \frac{1}{arctgx + 1}.
4,5(49 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ