А) Если исходные числа делятся на p, то и (5n - 1) - 5 * (n - 10) также делится на p, так как каждое слагаемое делится на p. Раскроем скобки, приведём подобные слагаемые: (5n - 1) - 5 * (n - 10) = 5n - 1 - 5n + 15 = 14 = 2 * 7 Поскольку 14 должно делиться на p, то вариантов для p немного - только 2 и 7. Если бы p было равно двум, то тогда на 2 должна была бы делиться и сумма (5n - 1) + (n - 10) = 6n - 11, что невозможно - понятно, что это число нечетное. Итак, p = 7.
б) n - 10 делится на 7, тогда и (n - 10) + 7 = n - 3 также делится на 7, что и требовалось.
А) Если исходные числа делятся на p, то и (5n - 1) - 5 * (n - 10) также делится на p, так как каждое слагаемое делится на p. Раскроем скобки, приведём подобные слагаемые: (5n - 1) - 5 * (n - 10) = 5n - 1 - 5n + 15 = 14 = 2 * 7 Поскольку 14 должно делиться на p, то вариантов для p немного - только 2 и 7. Если бы p было равно двум, то тогда на 2 должна была бы делиться и сумма (5n - 1) + (n - 10) = 6n - 11, что невозможно - понятно, что это число нечетное. Итак, p = 7.
б) n - 10 делится на 7, тогда и (n - 10) + 7 = n - 3 также делится на 7, что и требовалось.
1)4 3/5+2 5/7+5 9/35 = 23/5+19/7+184/35 = 440/35 =12 20/35 = 12 4/7.
2)1 2/36+6 4/15+8 17/45 = 5/3+94/15+377/45 = 734/45 = 16 14/45.
3) 8 3/40+12 11/20+6 7/80 = 323/40+251/20+487/80 = 2137/80 = 26 57/80.