М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nikcentennial
nikcentennial
03.12.2022 01:08 •  Математика

Центрально симметричные фигуры правило​

👇
Ответ:
mamonova86
mamonova86
03.12.2022

ответ:

симметрия — слово греческого происхождения, как и многие другие слова, которые связаны с . оно означает соразмерность, наличие определённого порядка, закономерности в расположении частей. смотря на объекты вокруг, мы не раз восклицаем: «какая симметрия! »

aksiala9.jpg

люди с давних времён использовали симметрию в рисунках, орнаментах, предметах быта, в архитектуре, художестве, строительстве.

но симметрия широко распространена и в природе, где не было вмешательства человеческой руки. её можно наблюдать в форме листьев и цветов растений, в расположении различных органов животных, в форме кристаллических тел, в порхающей бабочке, загадочной снежинке, морской звезде.

111.jpg

пока рассмотрим две симметрии на плоскости: относительно точки и прямой.

центральная симметрия

симметрию относительно точки называют центральной симметрией.

точки m и m1 симметричны относительно некоторой точки o , если точка o является серединой отрезка mm1 .

simetrija_c_punkti.png

точка o называется центром симметрии.

алгоритм построения центрально-симметричных фигур.

simetrija_c.png

построим треугольник a1b1c1 , симметричный треугольнику abc относительно центра (точки) o :

1. для этого соединим точки a , b , c с центром o и продолжим эти отрезки;

2. измерим отрезки ao , bo , co и отложим с другой стороны от точки o равные им отрезки ao=oa1; bo=ob1; co=oc1 ;

3. соединим получившиеся точки отрезками и получим треугольник a1b1c1 , симметричный данному треугольнику abc .

фигуры, симметричные относительно некоторой точки, равны.

фигура симметрична относительно центра симметрии, если для каждой этой точки фигуры симметричная ей точка также лежит на этой фигуре. такая фигура имеет центр симметрии (фигура с центральной симметрией).

есть фигуры с центральной симметрией, это, например, окружность и параллелограмм. у окружности центр симметрии — это её центр, у параллелограмма центр симметрии — это точка, в которой пересекаются его диагонали. есть много фигур, у которых нет центра симметрии.

осевая симметрия

осевая симметрия — это симметрия относительно проведённой прямой (оси).

точки m и m1 симметричны относительно некоторой прямой (оси симметрии), если эти точки лежат на прямой, перпендикулярной данной, и на одинаковом расстоянии от оси симметрии.

simetrija_ass_punkti.png

алгоритм построения фигуры, симметричной относительно некоторой прямой.

simetrija_ass.png

построим треугольник a1b1c1 , симметричный треугольнику abc относительно красной прямой:

1. для этого проведём из вершин треугольника abc прямые, перпендикулярные оси симметрии, и продолжим их дальше на другой стороне оси.

2. измерим расстояния от вершин треугольника до получившихся точек на прямой и отложим с другой стороны прямой такие же расстояния.

3. соединим получившиеся точки отрезками и получим треугольник a1b1c1 , симметричный данному треугольнику abc .

фигуры, симметричные относительно прямой, равны.

фигура считается симметричной относительно прямой, если для каждой точки рассматриваемой фигуры симметричная для неё точка относительно данной прямой также находится на этой фигуре. прямая является в этом случае осью симметрии фигуры

4,4(33 оценок)
Открыть все ответы
Ответ:
mstuckov98
mstuckov98
03.12.2022
Jetzt können Schulen moym vtorыm Hause angerufen werden. Signifikante Ona, fand im Leben meines. Ymenno Schule bolshe vsego vlyyaet auf rasporyadok moeho Tag, ist es etwas, was ich zanymayus. Es ist in der Schule habe ich obschayus mit Freunden, Mitschülern, wird der Unterricht neue und interessante viel lernen.  Klassnyj komnatы in der School of My prostornыe svetlыe, S. Bolschoi oknamy udobnыmy und Schreibtische. Deren ukrashenы die Wandfarbe, Bilder, Tabellen und Porträts vыdayuschyhsya Wissenschaftler.
K hlavnomu Login gedieh Spitzen krыltso mit der Säule und einer Vielzahl stupenek. C эtoho krыltsa Jedes Jahr im Herbst und Frühjahr mit Pervыm und Poslednym Ring uns pozdravlyaet Regisseur, Schulleiter und verschiedenen staatlichen Standards. Gelegentlich etom krыltso ukrashayut Farben und vozdushnыmy Schichten.
Auf der ersten Etage vor einem prostornыy Bolschoi Hall in Kotor hängen Plan der Klassen, stenhazetы, obъyavlenyya. Aber sie Bolschaja Ego Stolz - ohromnыe Töpfe mit hoher Farb - Palmen, komnatnыmy rozamy, Geranie und Sekunde. Sie waren zabotlyvo tehnycheskyy Mitarbeiter Schulen und Knödel uhazhyvaet Selbst die Jünger.
Auch in unserer Schule gibt aktovыy Halle, zwei Sporthallen, und Shkolny Hof - Große stadyon. In der Klasse Informatik vor neuen Projekte Computer, und ich habe in neterpenyem s gehofft, wenn CEI unterliegen poyavytsya in Maugham Plan. Und sonst dort proektorы meisten Klassen. Auf der ersten Etage vor einem chytalnыy Hall Library und Co ynteresnыh Vielzahl von Bücher, sowie Stolowaja, wo pekut vkusnыe Brötchen und otkuda immer appetytno pahnet.
Meine Schule Sehr Uyutnaya und in Neu Es gibt neobhodymoe für uchebы. Nravytsya mir meine Schule!...
4,5(12 оценок)
Ответ:
ziksharof
ziksharof
03.12.2022

Пошаговое объяснение:

В математике есть много подобных «доказательств». В том числе есть и «доказательство» того, что 2*2=5. Но все эти «доказательства» содержат в себе ошибки, но бывает, что их трудно сразу обнаружить. Ученые такими доказательствами не занимаются. Только шутники, которые неплохо знают математику.

То, что 2+2=5 есть много разных «доказательств». Приведу самое Представим равенство: 20-20=25-25. Выносем множители: 4(5-5)=5(5-5) и разделим на общий множитель (5-5). Получим 4=5. Следовательно, 2+2=5. Попробуйте найти здесь ошибку. А всё очень А в математике делить на ноль нельзя.

Ещё одно «доказательство». 2+2=5. Преобразуем это равенство 2 * 1 + 2 * 1 = 5 * 1. Распишем 1 как частное равных чисел: Имем 1 = (5-5)/(5-5). Тогда получим 2 * (5-5)/(5-5) + 2 * (5-5)/(5-5) = 5 * (5-5)/(5-5). Умножим обе части уравнения на(5-5), тогда имеем 2*(5-5) + 2*(5-5) = 5*(5-5) Отсюда получим 0 + 0 = 0. Это доказательство похоже на предыдущее, но лихо закрученное. Здесь также нельзя делить на ноль.

А вот ещё более сложное «доказательство». Докажем что 2+2=5 и 2 * 2 = 5, тоже равно 5. То есть 4=5 . Запишем сначала очевидное равенство 25 - 45 = 16 - 36 . Прибавим (9/2)^2 к обеим частям 25 - 45 + (9/2)^2 = 16 - 36 + (9/2)^2. Или 5^2 - (2 * 5 * 9)/2 + (9/2)^2 = 4^2 - (2 * 4 * 9)/2 + (9/2)^2. Отсюда(5-9/2)^2 = (4-9/2)^2. Обе части положительны, можно извлечь квадратный корень. 5 - 9/2 = 4 - 9/2. Теперь прибавим 9/2 к обеим частям уравнения: 5 = 4 что и требовалось доказать. Итак, 2*2 = 5 и 2+2=5. Где здесь ошибка в доказательстве?

4,7(93 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ