определена на множестве E 
где
.
на области
от
(то есть:
) выполняется
.
, выполняется
.
есть
, на области которой выполняется 
). Следовательно -
.
нужно отдельно доказать предел
.
. Но! Множество натуральных чисел
тоже подмножество
, значит
тоже непрерывна, получается - доказали что
непрерывна на области определения? Известно, что
тоже непрерывна на области определения, но
, понятное дело, не определена на
!
" или, "непрерывна на отрезке
"...Пусть сумма кредита равна S, а годовые составляют а %. Тогда 31 декабря каждого года оставшаяся сумма долга умножается на коэффициент: b = 1 + 0,01a.
После первой выплаты сумма долга составит:
S1 = Sb − X.
После второй выплаты сумма долга составит:
S2 = S1b − X = (Sb − X)b − X = Sb² − (1 + b)X.
После третьей выплаты сумма оставшегося долга равна:
S3 = Sb³ - (1-b+b²)X = Sb³ -
· X
После четвертой выплаты сумма оставшегося долга равна:
S4 =
- (1 + b +b² + b³)X =
-
· X
По условию четырьмя выплатами Алексей должен погасить кредит полностью, поэтому
-
· X = 0.
Потом выражаешь из этого выражения X и при S = 6902000 и а = 12,5, получаем: b = 1,125 получается:
X =
рублей
вообще по теореме вероятности, но чтобы не заморачиваться
0,8*0,4=0,32