Пошаговое объяснение:
Предположим, что утверждение задачи не верно. Обозначим сумму цифр числа n через S(n). Среди любых 39 последовательных натуральных чисел обязательно найдётся не менее трёх делящихся на 10; пусть a минимальное из них. При этом получаем, что среди данных 39 чисел также есть и a + 1,..., a + 29. Поскольку a делится на 10, то S(a + 1) = S(a) + 1, S(a + 2) = S(a) + 2,..., S(a + 9) = S(a) + 9. Поэтому среди чисел a, a + 1,..., a + 9 не встречается число, сумма цифр которого делится на 11, только если S(a) $ \equiv$ 1 mod 11. При этом если a + 10 не делится на 100, то S(a + 10) = S(a) + 1, а значит, среди чисел a + 10, a + 11,..., a + 19 найдётся такое, что сумма его цифр делится на 11. Получили противоречие. Осталось рассмотреть случай, когда a + 10 делится на 100. Но тогда заметим, что S(a + 20) = S(a + 10) + 1, а значит, аналогично первому случаю среди чисел a + 10, a + 11,..., a + 29 найдётся число, сумма цифр которого делится на 11. Опять получили противоречие, значит, утверждение задачи верно.
Имеем многочлен
Корнями многочлена называют корни уравнения
Имеем уравнение пятого порядка. Попробуем его решить с теоремы Безу.
Суть этой теоремы в том, что если уравнение вида с ненулевым свободным членом имеет некий корень , принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.
Выпишем все делители свободного члена:
Подставим в корень уравнения и получим:
— неправда
Подставим в корень уравнения и получим:
— неправда
Подставим в корень уравнения и получим:
— правда
Следовательно, — один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком на
(см. вложение).
После этого исходное уравнение можно записать разложив на множители:
Решаем второе уравнение:
Рациональные корни:
Пошаговое объяснение: