При первом броске выпавшее число может быть от 1 до 6. При втором броске - аналогично. На прикрепленной картинке представлены все возможные сочетания чисел, выпадающих при броске игральной кости дважды. Например, "1;1" означает, что оба раза выпало число 1; "3;4" означает, что при первом броске выпало число 3, при втором - 4. Следовательно, нужно определить, в каких сочетаниях между числами разница составляет 2. Это можно наблюдать в таких случаях, когда выпадают числа: "1;3", "2;4", "3;1", "3;5", "4;2", "4;6", "5;3", "6;4". Таким образом, условие задания удовлетворяют только 8 случаев из 36 возможных. Вероятность определяется через отношение нужных нам событий к числу всех возможных. Получаем, что вероятность того, что при броске игральной кости дважды выпавшие числа очков будут отличаться на 2, равна: Это и есть ответ.
При первом броске выпавшее число может быть от 1 до 6. При втором броске - аналогично. На прикрепленной картинке представлены все возможные сочетания чисел, выпадающих при броске игральной кости дважды. Например, "1;1" означает, что оба раза выпало число 1; "3;4" означает, что при первом броске выпало число 3, при втором - 4. Следовательно, нужно определить, в каких сочетаниях между числами разница составляет 2. Это можно наблюдать в таких случаях, когда выпадают числа: "1;3", "2;4", "3;1", "3;5", "4;2", "4;6", "5;3", "6;4". Таким образом, условие задания удовлетворяют только 8 случаев из 36 возможных. Вероятность определяется через отношение нужных нам событий к числу всех возможных. Получаем, что вероятность того, что при броске игральной кости дважды выпавшие числа очков будут отличаться на 2, равна: Это и есть ответ.
треугольник тупоугольный.
Пошаговое объяснение:
а = 10 см - большая сторона треугольника
b = 3 см, - меньшая сторона треугольника
с = 8 см - средняя сторона треугольника
Для определения типа треугольника нам понадобится сумма квадратов меньших сторон (b² + c²) и квадрат большей стороны (а²)
Если а² = (b² + c²), то треугольник прямоугольный.
Если а² > (b² + c²), то треугольник тупоугольный.
Если а² < (b² + c²), то треугольник остроугольный.
а² = 10² = 100.
(b² + c²) = 3² + 8² = 73.
100 > 73 - треугольник тупоугольный.
ответ: треугольник тупоугольный.