М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Посемуська
Посемуська
08.02.2022 10:18 •  Математика

Рукопись содержит а страниц в первый день оператор набрал на компьютере 3/5 а во второй день - 1/4 всей рукописи сколько страниц осталось набрать оператору

👇
Ответ:
лунный3
лунный3
08.02.2022

\frac{3}{20} а

Пошаговое объяснение:

в первый день набрал 3а/5

во второй 1а/4

за два дня набрал \frac{3a}{5} + \frac{1a}{4}

= \frac{17}{20} a

осталось набрать а -  \frac{17}{20} a =\frac{3}{20} а

4,5(18 оценок)
Открыть все ответы
Ответ:
yellowumbrella
yellowumbrella
08.02.2022

Математическое ожидание - сумма попарных произведений значений случайной величины на вероятности, с которыми эти величины достигаются.

То есть, если значение x_1 достигается с вероятностью p_1, значение x_2 - с вероятностью x_2, и так далее, значение x_n - с вероятностью x_n, то математическое ожидание:

M(x)=x_1p_1+x_2p_2+...+x_np_n=\sum\limits_{i=1}^{n}x_ip_i

Математическое ожидание показывает среднее или наиболее вероятное значение случайной величины. В единичном испытании математическое ожидание равно вероятности события.

Для вычисления мат.ожидания как ожидаемого числа вопросов используем формулу:

M(x)=pn, где p - вероятность осуществления некоторого события, n - число повторений.

В нашем случае, p - вероятность того, что очередной вопрос не из группы "спринт", n - число вопросов группы "спринт" (нас интересует сколько раз среди них встретится вопрос не группы "спринт").

Поскольку вопросов не из группы "спринт" 10+8=18, а общее число вопросов 30+10+8=48, то вероятность того, что очередной вопрос не из группы "спринт" равна:

p=\dfrac{18}{48}

Число вопросов группы "спринт": n=30

Тогда:

M(x)=\dfrac{18}{48}\cdot30 =11.25

Конечно, можно действовать по первой формуле.

Для этого рассмотрим возможные количества вопросов не из группы "спринт", которые могли оказаться в группе "спринт". Это количества: 0, 1, 2, ..., 17, 18.

Найдем вероятности осуществления этих возможностей. Так как общий смысл сохраняется во всех ситуациях, то рассмотрим нахождение вероятности в общем виде - найдем с какой вероятностью i вопросов не из группы "спринт" попадут в группу "спринт".

Число выбрать вопросы в группу "спринт" с учетом этого условия соответствует тому, что из 18 вопросов не группы "спринт" мы выберем некоторые i штук, а остальные (30-i) штук мы выберем из 30 вопросов группы "спринт". Итоговое число благоприятных комбинаций: C_{30}^{30-i}\cdot C_{18}^i=C_{30}^i\cdot C_{18}^i.

Общее число выбрать вопросы в группу "спринт" соответствует тому, что из всех 48 вопросов мы выберем некоторые 30 штук. Общее число комбинаций: C_{48}^{30}.

Тогда, ситуации, что в группе "спринт" окажется i вопросов не из группы "спринт", соответствует вероятность \dfrac{C_{30}^i\cdot C_{18}^i}{C_{48}^{30}}.

Запишем математическое ожидание как сумму попарных произведений значений на вероятность:

M(x)=\sum\limits_{i=0}^{18}\left(i\cdot \dfrac{C_{30}^i\cdot C_{18}^i}{C_{48}^{30}}\right)

Можно попробовать упростить эту формулу:

M(x)=\sum\limits_{i=0}^{18}\left(i\cdot \dfrac{\dfrac{30!}{i!\cdot(30-i)!} \cdot \dfrac{18!}{i!\cdot(18-i)!} }{\dfrac{48!}{30!\cdot18!} }\right)

M(x)=\sum\limits_{i=0}^{18} \dfrac{i\cdot(30!\cdot18!)^2}{ (i!)^2\cdot(30-i)!\cdot(18-i)!\cdot48!}

M(x)=\dfrac{(30!\cdot18!)^2}{48!} \cdot \sum\limits_{i=0}^{18} \dfrac{i}{ (i!)^2\cdot(30-i)!\cdot(18-i)!}

Далее нужно каким-либо досчитать эту величину. Вычисления дают полученный ранее результат:

M(x)=11.25

Учитывая контекст вопроса, а именно, что мат.ожидание соответствует числу вопросов, попавших в группу "спринт", запишем также округленное до целого числа значение мат.ожидания:

M(x)\approx11

ответ: M(x)=11.25\approx11


13. В mathleague три раунда: Sprint, Target и Team. В Sprint 30 заданий, в Team 10 заданий, в Target
4,5(14 оценок)
Ответ:
МЯЧ
мяч - 1 слог, 
[м'ач']
М [м'] - согл., зв.непарн., мягк.парн., сонорн.
Я [а] - гласн., ударн.
Ч [ч'] - согл., глух.непарн., мягк.непарн., шипящ.

3 буквы, 3 звука

ЯЩИК
я|щик - 2 слога, 1-й ударный 
[й'ащ'ик]
Я [й'] - согл., зв.непарн., мягк.непарн., сонорн.
   [а] - гласн., ударн.
Щ [щ'] - согл., глух.непарн., мягк.непарн., шипящ.
И [и] - гласн., безударн.
К [к] - согл., глух.парн., тв.парн.

4 буквы, 5 звуков

ПЕНЬ
пень - 1 слог, 
[п'эн']
П [п'] - согл., глух.парн., мягк.парн.
Е [э] - гласн., ударн.
Н [н'] - согл., зв.непарн., мягк.парн., сонорн.
Ь [ - ]

4 буквы, 3 звука
4,7(30 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ