М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ruzali4
ruzali4
01.01.2022 12:16 •  Математика

Решить уравнение 4 класс. (х-42)+36=80

👇
Ответ:
omastaliev2018
omastaliev2018
01.01.2022

х = 86.

Пошаговое объяснение:

( х - 42 ) + 36 = 80

х - 42 = 80 - 36

х - 42 = 44

х = 42 + 44

х = 86

Проверка:

( 86 - 42 ) + 36 = 80

           44 + 36 = 80

                   80 = 80

Удачи!

4,8(11 оценок)
Ответ:
divaevaadila
divaevaadila
01.01.2022

X=86

Подробность:

(Х-42)+36=80

Х-42+36=80

X-42=80-36

X-42=44

X=44+42

X=86

ОТВЕТ X=86

Проверка

(86-42)+36=80

44+36=80

80=80

4,4(90 оценок)
Открыть все ответы
Ответ:
РоузХз
РоузХз
01.01.2022

Пошаговое объяснение:

) Четырехугольник является параллелограммом по определению, если у него противолежащие стороны параллельны, то есть лежат на параллельных прямых. ABCD — параллелограмм, если AB ∥ CD, AD ∥ BC. Для доказательства параллельности прямых используют один из признаков параллельности прямых, чаще всего — через внутренние накрест лежащие углы. Для доказательства равенства внутренних накрест лежащих углов можно доказать равенство пары треугольников. Например, это могут быть пары треугольников 1) ABC и CDA, 2) BCD и DAB, 3) AOD и COB, 4) AOB и COD. 2) Четырехугольник является параллелограммом, если у него диагонали в точке пересечения делятся пополам. Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AO=OC, BO=OD. 3) Четырехугольник является параллелограммом, если у него противолежащие стороны параллельны и равны. Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AD=BC и AD ∥ BC (либо AB=CD и AB ∥ CD). Для этого можно доказать равенство одной из тех же пар треугольников. 4) Четырехугольник — параллелограмм, если у него противоположные стороны попарно равны. Чтобы воспользоваться этим признаком параллелограмма, нужно предварительно доказать, что AD=BC и AB=CD. Для этого доказываем равенство треугольников ABC и CDA или BCD и DAB. Это — четыре основных доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать. Доказательство с векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам

так вроде

4,5(8 оценок)
Ответ:
Vitalihka
Vitalihka
01.01.2022

2 4

Объяснение:

1) Четырехугольник является параллелограммом по определению, если у него противолежащие стороны параллельны, то есть лежат на параллельных прямых.

ABCD — параллелограмм, если

AB ∥ CD, AD  ∥ BC.

Для доказательства параллельности прямых используют один из признаков параллельности прямых, чаще всего — через внутренние накрест лежащие углы. Для доказательства равенства внутренних накрест лежащих углов можно доказать равенство пары треугольников.

Например, это могут быть пары треугольников

1) ABC и CDA,

2) BCD и DAB,

3) AOD и COB,

4) AOB и COD.

2) Четырехугольник является параллелограммом, если у него диагонали в точке пересечения делятся пополам.

Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AO=OC, BO=OD.

3) Четырехугольник является параллелограммом, если у него противолежащие стороны параллельны и равны.

Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AD=BC и AD ∥ BC (либо AB=CD и AB ∥ CD).

Для этого можно доказать равенство одной из тех же пар треугольников.

4) Четырехугольник — параллелограмм, если у него противоположные стороны попарно равны.

Чтобы воспользоваться этим признаком параллелограмма, нужно предварительно доказать, что AD=BC и AB=CD.

Для этого доказываем равенство треугольников ABC и CDA или BCD и DAB.

Это — четыре основных доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать.

Доказательство с векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам.

4,6(90 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ