4класс . , поезд шел 5ч со средней скоростью 60км/ч и столько же часов со средней скоростью 40км/ч . объясни что означает следующие вырождения: 60*5. ,40*5. 5+5. (60*5+40*5): (5+5)
1. Расстояние пройденное в первом случае 2. Расстояние пройденное во втором случае 3. Общее количество времени в пути 4. Средняя скорость на протяжении всего пути
1) Находим область определения: вся числовая ось, кроме х = -5 / 4 (при этом значении знаменатель превращается в ноль). 2) Находим точки пересечения с осями: х = 0 у = -3/5 это точка пересечения с осью у. у = 0 надо числитель приравнять 0: 2х - 3 = 0 х = 3/2 это точка пересечения с осью х. 3) Исследуем функцию на парность или непарность: Функция называется парной, если для любого аргумента с его областью обозначения будет f(-x)=f(x), или же непарной - если для любого аргумента с областью обозначения будет f(-x)=-f(x). К тому же, график парной функции будет симметричным относительно оси ординат, а график непарной - симметричным относительно точки (0;0). Правда, чаще встречается название этих свойств функции как чётность и нечётность. 2*x - 3 -3 - 2*x ---------- = ---------- 1 1 (4*x + 5) (5 - 4*x) - Нет 2*x - 3 -3 - 2*x ---------- = - ---------- 1 1 (4*x + 5) (5 - 4*x) - Нет, значит, функция не является ни чётной, ни нечётной. 4) Исследуем функцию на монотонность: — это значит выяснить, на каких промежутках области определения функция возрастает, а на каких убывает. Если производная положительна, то функция возрастает и наоборот. . Так как переменная в квадрате, то производная всегда положительна, а функция возрастающая на всей числовой оси (кроме х = -5/4). 5) Находим экстремумы функции: Так как переменная находится в знаменателе, то производная не может быть равна нулю. Следовательно, функция не имеет ни максимума, ни минимума. 6) Исследуем функции на выпуклость, вогнутость: Если вторая производная меньше нуля, то функция выпуклая, если производная больше нуля - то функция вогнутая. Вторая производная равна . При x > (-5/4) функция выпуклая, при x < (-5/4) функция вогнута. 7) Находим асимптоты графика функции: Горизонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo 2*x - 3 lim ------- = 1/2 x->-oo4*x + 5 значит,уравнение горизонтальной асимптоты слева:y = 1/2 2*x - 3 lim ------- = 1/2 x->oo4*x + 5 значит,уравнение горизонтальной асимптоты справа:y = 1/2Наклонные асимптотыНаклонную асимптоту можно найти, подсчитав предел функции (2*x - 3)/(4*x + 5), делённой на x при x->+oo и x->-oo 2*x - 3 lim ----------- = 0 x->-oox*(4*x + 5) значит,наклонная совпадает с горизонтальной асимптотой справа 2*x - 3 lim ----------- = 0 x->oox*(4*x + 5) значит,наклонная совпадает с горизонтальной асимптотой слева 8) Можно найти дополнительные точки и построить график График и таблица точек приведены в приложении.
ЗАДАЧА 1.Отмерить 3 л, имея сосуд 5 л. Какое наименьшее число переливаний потребуется для того, чтобы в четырехлитровую кастрюлю с крана и пятилитровой банки налить 3 литра воды? Решение задачи 1.
Наливаем кастрюлю. Переливаем воду из кастрюли в банку. Наливаем кастрюлю. Доливаем полную банку, и в кастрюле остается 3 литра.
ЗАДАЧА 2.
Для приготовления компота маме нужно налить в 5-литровую кастрюли 4 литра воды. Как маме справиться с этой задачей, если у мамы есть кроме этой кастрюли ещё 3-литровая банка, водопроводный кран и раковина, куда можно выливать воду?
Решение к задаче 2.
Нальём в 3-литровую банку воду и перельём её в кастрюлю. Затем еще раз наполним банку и выльём в кастрюлю, сколько поместится. Тогда в кастрюле будет 5 литров и 1 литр в 3-литровой банке. Теперь выльем всю воду из кастрюли в раковину. Затем перельем литр из банки в кастрюлю и добавим ещё три литра, наполнив банку ещё раз. Теперь в кастрюле 1 + 3 = 4 литра, что и требовалось. Задача решена.
2. Расстояние пройденное во втором случае
3. Общее количество времени в пути
4. Средняя скорость на протяжении всего пути