М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
daniilnz1
daniilnz1
07.05.2021 15:01 •  Математика

Разделите число 61 на 4 части обратно пропорциональные числа 1, 2, 3,5

👇
Ответ:
vredina34
vredina34
07.05.2021

Пошаговое объяснение:

1)  1/1 : 1/2 : 1/3 : 1/5 -  отношение обратных чисел.

Приводим к общему знаменателю (и забываем о нём). НОК(2,3,5) = 30.

2) 30/30 : 15/30 : 10/30 : 6/5 - и без знаменателя получаем:

30 : 15 : 10 : 6 -  пропорция обратных чисел.

3) 30+15+10+6 = 61 - всего частей надо разделить число 61. 1 часть =1.

ОТВЕТ: 30, 15, 10, 6 - части числа 61.

4,5(91 оценок)
Открыть все ответы
Ответ:
Это дифференциальное уравнение второго порядка, линейное неоднородное со специальной правой части(относится ко второму виду)
Нужно найти: Уо.н. = Уо.о. + Уч.н.
Найдем решение однородного уравнения
y''-4y'-5y=0
Воспользуемся методом Эйлера y=e^{kx}, и перейдем к характеристическому уравнению:
k^2-4k-5=0
По т. Виета:
 k_1=5\\ k_2=-1
Тогда решение однородного уравнения имеет вид:
y_{o.o.}=C_1y_1+C_2y_2=C_1e^{5x}+C_2e^{-x}

Найдем теперь частное решение
Положим f(x)=8\cos2x+9\sin2x
f(x)=x^ke^{\alpha x}(P_n(x)\sin ( \beta x)+Q_n(x)\cos( \beta x))
Где Q_n(x),\,\, P_n(x) - многочлены степеней х(или полиномы)

Q_n(x)=8;\,\,\,\, P_n(x)=9;\,\,\, \alpha=0;\,\,\, \beta=2
Тогда частное решение будем искать в виде:
Уч.н. =A\cos2x+B\sin2x
Найдем первую и вторую производную
y'=(A\cos2x+B\sin2x)'=2B\cos2x-2A\sin2x\\ \\ y''=(2B\cos2x-2A\sin2x)'=-4A\cos2x-4B\sin2x
Подставим в исходное уравнение

-4A\cos2x-4B\sin2x-8B\cos2x+8A\sin2x-5A\cos2x-5B\sin2x\\ \\ =8\cos2x+9\sin2x\\ \\ -9A\cos2x-9B\sin2x-8B\cos2x+8A\sin2x=8\cos2x+9\sin2x\\ \\ \cos2x(-9A-8B)+\sin2x(8A-9B)=8\cos2x+9\sin2x
Приравниваем коэффициенты при одинаковых степенях х, получаем
\displaystyle \left \{ {{8A-9B=9} \atop {-9A-8B=8}} \right. \Rightarrow \left \{ {{A=0} \atop {B=-1}} \right.

Тогда частное решение имеет вид:

Уч.н. =-\sin2x

Уо.н. = C_1e^{5x}+C_2e^{-x}-\sin2x - ответ.
4,7(82 оценок)
Ответ:
СЕРГЕЙ2288822
СЕРГЕЙ2288822
07.05.2021
Это дифференциальное уравнение второго порядка, линейное неоднородное со специальной правой части(относится ко второму виду)
Нужно найти: Уо.н. = Уо.о. + Уч.н.
Найдем решение однородного уравнения
y''-4y'-5y=0
Воспользуемся методом Эйлера y=e^{kx}, и перейдем к характеристическому уравнению:
k^2-4k-5=0
По т. Виета:
 k_1=5\\ k_2=-1
Тогда решение однородного уравнения имеет вид:
y_{o.o.}=C_1y_1+C_2y_2=C_1e^{5x}+C_2e^{-x}

Найдем теперь частное решение
Положим f(x)=8\cos2x+9\sin2x
f(x)=x^ke^{\alpha x}(P_n(x)\sin ( \beta x)+Q_n(x)\cos( \beta x))
Где Q_n(x),\,\, P_n(x) - многочлены степеней х(или полиномы)

Q_n(x)=8;\,\,\,\, P_n(x)=9;\,\,\, \alpha=0;\,\,\, \beta=2
Тогда частное решение будем искать в виде:
Уч.н. =A\cos2x+B\sin2x
Найдем первую и вторую производную
y'=(A\cos2x+B\sin2x)'=2B\cos2x-2A\sin2x\\ \\ y''=(2B\cos2x-2A\sin2x)'=-4A\cos2x-4B\sin2x
Подставим в исходное уравнение

-4A\cos2x-4B\sin2x-8B\cos2x+8A\sin2x-5A\cos2x-5B\sin2x\\ \\ =8\cos2x+9\sin2x\\ \\ -9A\cos2x-9B\sin2x-8B\cos2x+8A\sin2x=8\cos2x+9\sin2x\\ \\ \cos2x(-9A-8B)+\sin2x(8A-9B)=8\cos2x+9\sin2x
Приравниваем коэффициенты при одинаковых степенях х, получаем
\displaystyle \left \{ {{8A-9B=9} \atop {-9A-8B=8}} \right. \Rightarrow \left \{ {{A=0} \atop {B=-1}} \right.

Тогда частное решение имеет вид:

Уч.н. =-\sin2x

Уо.н. = C_1e^{5x}+C_2e^{-x}-\sin2x - ответ.
4,8(16 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ