4ц66кг=6кг700г=8ц44кг=11мин=1ч42мин=1ч26мин
ответ: y = x + C/x
Пошаговое объяснение:
y' + (y / x) = 2
Диф уравнение первого порядка
Введем новую переменную z = y - x
и приведем у равнение к уравнению с разделяющимися переменными
Та как z = y - x, то y = z + x
y' = z' + 1
Следовательно можно записать
z' + 1 + ((z+x) / x) = 2
z' + 1 + (z/ x) + 1 = 2
z' + (z/ x) = 0
z' = - z/ x
z'/z = -1/ x
dz/z = -dx/x
Интегрируем обе части уравнения
ln(z) = -ln(x) + ln(C)
ln(z) = ln(C/x)
z = C/x
Находим исходную функцию у
y = z + x = x+C/x
ответ: y = x + C/x
Пошаговое объяснение:
y' + (y / x) = 2
Диф уравнение первого порядка
Введем новую переменную z = y - x
и приведем у равнение к уравнению с разделяющимися переменными
Та как z = y - x, то y = z + x
y' = z' + 1
Следовательно можно записать
z' + 1 + ((z+x) / x) = 2
z' + 1 + (z/ x) + 1 = 2
z' + (z/ x) = 0
z' = - z/ x
z'/z = -1/ x
dz/z = -dx/x
Интегрируем обе части уравнения
ln(z) = -ln(x) + ln(C)
ln(z) = ln(C/x)
z = C/x
Находим исходную функцию у
y = z + x = x+C/x
6ц - 1ц 34кг=4ц 66кг
23кг 200г - 16кг 500г=22кг 1200г - 16кг 500г=6кг 700г
8ц+44кг=8ц 44кг
3ч 45мин - 3ч 34мин= 11 мин
3ч 56мин - 2ч 14мин =1ч 42 мин
3ч-1ч 34мин=2ч 60мин- 1ч 34мин=1ч 26 мин