1)5*16=80м-пробежал Игорь.
2)4*16=64м-пробежал Слава.
Таким образом, в результате: −3x²
Производная произведения константы на функцию есть произведение этой константы на производную данной функции.В силу правила, применим: x получим 1Таким образом, в результате: 3В результате: 5x⁴−3x²+35x⁴−3x²+3
Запишем уравнения касательной в общем виде:
yk = y0 + y'(x0)(x - x0)
По условию задачи x0 = 0, тогда y0 = -1
Теперь найдем производную:
y' = (x⁵-x³+3x-1)' = 3-3x²+5x⁴
следовательно:
f'(0) = 3-3 02+5 04 = 3
В результате имеем:
yk = y0 + y'(x0)(x - x0)
yk = -1 + 3(x - 0)
или
yk = -1+3x
2) KL² =NL*LM² NL =x LM=MN -NL =25 -x;
144 =x(25 -x) ;
x² -25x +144 =0;
x = 9
x=16 (по рисунку NL < LM )
ΔKLN : NK² =NL²+ LK²
NK =3*5 =15 (9 =3*3; 12=3*4; 3*5=15)..
ΔKLM : KM² =KL² +LM²
KM =4*5 =20 (12 =4*3; 16=4*4 ;4*5 =20)
3) KE² =EM*EL
EM =KE²/EL =6²/8 =9/2 =4,5
KL² =KE² +EL² =6² +8² =100 =10²
KL =10.
KL² =ML*EL
ML =KL²/EL =100/8 =12,5.;
( 5/EM = ML --EL =12,5 -8 =4,5)
MK² =ML*ME;
MK² =12,5*4,5 =25*0,5*0,5*9;
MK =5*0,5*3 =7,5.
4) MN² =MK² +KN² =5² +²12² =25 +144 =169 =13²;
MN =13;
MK² =MN*MT ;
MT =MK²/MN=5²/13 =25/13.
NT =MN -MT =13 -25/13 =144/13;
KT² =MT*NT=25/13*144/13 =(5*12/13)² ;
KT =5*12/13 =60/13.
или из ΔMTK :
KT² =MK² -MT²² =5² -(25/13)² =(5 -25/13)(5+25/13) =40/13*90/13 =(2*3*10/13)²;
KT =2*3*10/13 =60/13 .
1)16х5=80 м- пробежал Игорь
2)16х4=64 м-пробежал Слава