М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Reichale
Reichale
25.01.2023 20:57 •  Математика

Решите уравнения: 1) (x+1)²(x²+2x)=12 2) (x+1)⁴+4(x+1)²-21=0 3) (2x-1)⁴-7(2x-1)²+6=0 4) (x-2)²(x²-4x)+3=0

👇
Ответ:
Roni13372155
Roni13372155
25.01.2023

Пошаговое объяснение:

1) =(x^2+2x+1)(x^2+2x)-12=0,  пусть у=x^2+2x,  тогда (у+1)*у-12=0,  y^2+y-12=0,  корни ур-я  у=-4  и у=3,обратная замена  x^2+2x=-4  или  X^2+2x=3,  x^2+2x+4=0( нет реш-й, D<0),  x^2+2x-3=0,  корни  -3 и 1

2)пусть  y=(x+1)^2, y>0,  тогда y^2+4y-21=0,  корни ур-я   у=-7(не удовл) и у=3, обратная замена  (x+1)^2=3,  x+1=V3  или  x+1=-V3,  x=-1+V3  или  x=-1-V3

4) (x^2-4x+4)(x^2-4x)+3=0,  пусть у=x^2-4x,  тогда  (у+4)*у+3=0,  y^2+4y+3=0,  корни ур-я у=-3  и у=-1,  обратная замена  x^2-4x=-3  или x^2-4x=-1,  x^2-4x+3=0,  корни 3 и 1,  или  x^2-4x+1=0, D=16-4=12  x=4+-V12 /2=4+-2V3 /2=2+-V3, x=2+V3 и x=2-V3

4,4(2 оценок)
Открыть все ответы
Ответ:
ученик1443
ученик1443
25.01.2023

По условию никакие три из диагоналей, кроме случая, когда все три диагонали странные не пересекаются в одной точке. Заметим, что каждой паре пересекающихся диагоналей можно поставить в соответствие четыре вершины 30-тиугольника с концами диагоналей в этих вершинах. И наоборот любые четыре вершины однозначно определяют пару пересекающихся диагоналей с концами в этих вершинах. Таким образом установлено взаимно однозначное соответствие между каждой парой пересекающихся диагоналей и четверкой вершин им соответствующих. Подсчитаем вначале сколько всего точек пересечения диагоналей будет в данном выпуклом 30-тиугольнике без учета того, что 10 из его диагоналей пересекаются в одной точке. Так как каждой паре пересекающихся диагоналей соответствует четверка вершин многоугольника, то общее количество точек пересечения диагоналей дается количеством сочетаний из 30-ти вершин по 4, то есть C⁴₃₀ = 30!/4!(30-4)! = 30!/4!26! = 30*29*28*27/24 = 657720/24 = 27405. Общее количество точек пересечения диагоналей равно 27405. Теперь учтем тот факт, что 10 диагоналей в данном 30-тиугольнике пересекаются в одной точке. Заметим также, что поскольку эти 10 диагоналей пересекаются в одной точке, то концы никаких двух из них не исходят из одной вершины. А это значит, что если бы они не пересекались в одной точке, то точек пересечения было бы больше на количество сочетаний из десяти по два C²₁₀ - 1. Вычитаем единицу, поскольку имеется одна общая точка пересечения. Подсчитаем C²₁₀ = 10!/2!(10-2)! = 10!/2!8! = 10*9/2 = 90/2 = 45, имеем на C²₁₀ - 1 = 45 - 1 = 44 точки пересечения меньше общего числа подсчитанного ранее. Тогда общее количество точек пересечения в таком многоугольнике будет равно C⁴₃₀ - (C²₁₀ - 1) = C⁴₃₀ - C²₁₀ + 1 = 27405 - 45 - 1 = 27405 - 44 = 27361.

ответ: Всего 27361 точка пересечения.

4,4(45 оценок)
Ответ:
mot3333
mot3333
25.01.2023

По условию никакие три из диагоналей, кроме случая, когда все три диагонали странные не пересекаются в одной точке. Заметим, что каждой паре пересекающихся диагоналей можно поставить в соответствие четыре вершины 30-тиугольника с концами диагоналей в этих вершинах. И наоборот любые четыре вершины однозначно определяют пару пересекающихся диагоналей с концами в этих вершинах. Таким образом установлено взаимно однозначное соответствие между каждой парой пересекающихся диагоналей и четверкой вершин им соответствующих. Подсчитаем вначале сколько всего точек пересечения диагоналей будет в данном выпуклом 30-тиугольнике без учета того, что 10 из его диагоналей пересекаются в одной точке. Так как каждой паре пересекающихся диагоналей соответствует четверка вершин многоугольника, то общее количество точек пересечения диагоналей дается количеством сочетаний из 30-ти вершин по 4, то есть C⁴₃₀ = 30!/4!(30-4)! = 30!/4!26! = 30*29*28*27/24 = 657720/24 = 27405. Общее количество точек пересечения диагоналей равно 27405. Теперь учтем тот факт, что 10 диагоналей в данном 30-тиугольнике пересекаются в одной точке. Заметим также, что поскольку эти 10 диагоналей пересекаются в одной точке, то концы никаких двух из них не исходят из одной вершины. А это значит, что если бы они не пересекались в одной точке, то точек пересечения было бы больше на количество сочетаний из десяти по два C²₁₀ - 1. Вычитаем единицу, поскольку имеется одна общая точка пересечения. Подсчитаем C²₁₀ = 10!/2!(10-2)! = 10!/2!8! = 10*9/2 = 90/2 = 45, имеем на C²₁₀ - 1 = 45 - 1 = 44 точки пересечения меньше общего числа подсчитанного ранее. Тогда общее количество точек пересечения в таком многоугольнике будет равно C⁴₃₀ - (C²₁₀ - 1) = C⁴₃₀ - C²₁₀ + 1 = 27405 - 45 - 1 = 27405 - 44 = 27361.

ответ: Всего 27361 точка пересечения.

4,4(6 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ