М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
89994709040
89994709040
06.01.2021 00:21 •  Математика

Дано: bk-высота треугольника abc, ab=7, bc=3, m не пренадлежит плоскости abc, mb=4, am=√65, cm=5. доказать: mb перпендикулярна плоскости abc, ac перпендикулярна плоскости kbm

👇
Ответ:
alena230886
alena230886
06.01.2021
Для доказательства перпендикулярности нужно показать, что векторы MB и AC перпендикулярны плоскостям ABC и KMB соответственно.

Для начала, рассмотрим плоскость ABC.
Известно, что BC = 3, MB = 4 и CM = 5. Используя теорему косинусов в треугольнике MBC, мы можем найти угол MBC:
cos(MBC) = (MB^2 + BC^2 - CM^2) / (2 * MB * BC)
cos(MBC) = (4^2 + 3^2 - 5^2) / (2 * 4 * 3)
cos(MBC) = (16 + 9 - 25) / (24)
cos(MBC) = 0 / 24
cos(MBC) = 0

Так как cos(MBC) = 0, то угол MBC равен 90 градусов. Это означает, что отрезок MB перпендикулярен плоскости ABC.

Теперь рассмотрим плоскость KMB.
Известно, что AM = √65 и BM = 4. Используя теорему Пифагора в треугольнике AMB, мы можем найти длину отрезка AM:
AM^2 = AB^2 + BM^2
√65^2 = 7^2 + 4^2
65 = 49 + 16
65 = 65

Таким образом, длина отрезка AM соответствует условию. Это означает, что точка M лежит на окружности с центром в точке A и радиусом AM. Вспомним, что точка M не лежит в плоскости ABC, а лежит на плоскости KMB. Значит, плоскость KMB перпендикулярна отрезку AC.

Таким образом, мы доказали, что отрезок MB перпендикулярен плоскости ABC и отрезок AC перпендикулярен плоскости KMB.
4,7(13 оценок)
Проверить ответ в нейросети
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ