Пятница, 1 фев 20191. сколько делителей имеет число 180? 2. найдите нод и нок для пар чисел (4; 6), (5; 7), (16; 18), (8; 21), (25; 100), (72; 90), (34; 68), (12; 20), (45; 75)
Предположим, что первый житель сказал правду, и все трое - лжецы. Но, в таком случае, первый должен был солгать. Таким образом, первое высказывание является ложью. Теперь разберем второе высказывание. Предположим, что второй житель сказал неправду. В таком случае лжецов двое - первый и второй, а рыцарь - тот, кто промолчал. Если же второй житель сказал правду, то лжецом является первый, а двое оставшихся - рыцари. Таким образом, первый житель - точно лжец, третий - точно рыцарь, а второй может быть и лжецом и рыцарем.
Сніданок. Каша - гречана, вівсяна, з пшона. Готується тільки на воді. Можна додати кураги, горіхи, родзинки або спеції. 300 гр. Фруктів 200 гр. Не дуже жирного сиру з курагою, корицею або горіхами. Два шматочки хліба з вершковим маслом.
Склянка соку. Якщо зголоднієте, а то обіду ще далеко, то закусите фруктами, чашкою чаю, горіхами.
Обід. Порція овочевого або на курячому бульйоні супу. 150 гр. вареного м'яса (курей, індичка) або ж риби (форель, лосось). Не більше двох не круто зварених яйця. Мінімум хліба.
Шматочок сиру. Овочевий салат. Запити все це можна чаєм або кавою. Вечеря. Варені бобові. Суп або бульйон з курки або риби. Овочевий салат. 150 гр. м'яса або риби.
На гарнір радиться не дуже велика порція рису (коричневого) або макаронів, але обов'язково з пшениці твердої породи. Фрукти. Можна побалувати себе і невеликою порцією морозива.
Якщо перед тим як лягти спати ви відчули голод, то можна вжити склянку кефіру або молока, але без печива.
Пам'ятайте, ви вибрали шлях здорового харчування, в наше меню повинні входити тільки корисні складові. І тоді наш організм зміцніє і скаже нам
№ 1.
180 = 2 · 2 · 3 · 3 · 5 - простые множители числа
Все делители: 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180.
№ 2.
4 = 2²; 6 = 2 · 3
НОД (4 и 6) = 2; НОК (4 и 6) = 2² · 3 = 12
5 и 7 - простые числа
НОД (5 и 7) = 1; НОК (5 и 7) = 5 · 7 = 35
16 = 2⁴; 18 = 2 · 3²
НОД (16 и 18) = 2; НОК (16 и 18) = 2⁴ · 3² = 144
8 = 2³; 21 = 3 · 7; 8 и 21 - взаимно простые числа
НОД (8 и 21) = 1; НОК (8 и 21) = 8 · 21 = 168
25 = 5²; 100 = 2² · 5²
НОД (25 и 100) = 5² = 25; НОК (25 и 100) = 2² · 5² = 100
72 = 2³ · 3²; 90 = 2 · 3² · 5
НОД (72 и 90) = 2 · 3² = 18; НОК (72 и 90) = 2³ · 3² · 5 = 360
34 = 2 · 17; 68 = 2² · 17
НОД (34 и 68) = 2 · 17 = 34; НОК (34 и 68) = 2² · 17 = 68
12 = 2² · 3; 20 = 2² · 5
НОД (12 и 20) = 2² = 4; НОК (12 и 20) = 2² · 3 · 5 = 60
45 = 3² · 5; 75 = 3 · 5²
НОД (45 и 75) = 3 · 5 = 15; НОК (45 и 75) = 3² · 5² = 225