ответ: 4, 7, 13.
Пошаговое объяснение:
1) 24 : 3 = 8 (ябл.) — стало у каждого брата;
2) 8 • 2 = 16 (ябл.) — было у старшего брата до того, как он поделился яблоками;
3) 8 : 2 = 4 (ябл.) — по столько дал старший брат младшему и среднему;
4) 8 - 4 = 4 (ябл.) — по столько было у среднего и младшего до того, как поделился старший брат;
5) 4 • 2 = 8 (ябл.) — было у среднего брата до того, как он поделился яблоками;
6) 4 : 2 = 2 (ябл.) — дал средний брат старшему и младшему;
7) 16 - 2= 14 (ябл.) — было у старшего брата до того, как поделился средний;
8) 4 - 2 = 2 (ябл.) — было у младшего брата до того, как поделился средний;
9) 2 • 2 = 4 (ябл.) — было у младшего брата изначально;
10) 2 : 2 = 1 (ябл.) — дал младший брат старшему и среднему;
11) 14 - 1 = 13 (ябл.) — было у старшего изначально;
12) 8 - 1 = 7 (ябл.) — было у среднего брата изначально.
3) - высказывание истинно
Пошаговое объяснение:
В задаче ошибка, бесконечные множества не равны конечным множествам. Вместо равенства должно было быть знак подмножества.
Исправленная задача: Какое высказывание является истинным:
1) {-5; 1/2} ⊂ Z.
2){0; 17} ⊂ N.
3) {-1/3,4,0} ⊂ Q.
Решение.
Z - множество целых чисел, поэтому дробное число 1/2 равная половине не принадлежит множеству Z: 1) - высказывание ложно.
N - множество натуральных чисел, поэтому не содержит число 0: 2) - высказывание ложно.
Q - множество рациональных чисел, по определению, содержит числа представимые в виде p/q, где p ∈ Z, q ∈ N. Поэтому все элементы множества {-1/3,4,0} принадлежать множеству Q:
-1/3, в представлении p = -1, q = 3;
4, в представлении p = 4, q = 1;
0, в представлении p = 0, q = 1.
3) - высказывание истинно.