Объем призмы ищется по такой формуле:
V = Sосн * h, где Sосн — площадь основания призмы, h — ее высота.
Так как все ребра призмы равны, то h = 6 см и в ее основании лежит равносторонний треугольник. Площадь равностороннего треугольника можно найти по следующей формуле:
S = a²√3 / 4, где a — сторона треугольника.
Воспользуемся ей и найдем площадь основания призмы, зная, что a = 6 см:
Sосн = 6²√3 / 4 = 9√3 см².
Теперь можно найти объем призмы:
V = 9√3 * 6 = 54√3 ≈ 93,5 см³.
ответ: объем прямой треугольной призмы равен примерно 93,5 см³.
Пошаговое объяснение:
ответ:
пошаговое объяснение:
1. р= а+в+с
2. р= а*3
3. р=2* (а+с)
4. s = а*b
5. v=a*b*c
6. р=4*а
7. s = a^2
8. l=2πr
9. s=πr²
10. v=1⅓πr³