Объём пирамиды равен 1/3*s*h. проведём в ромбе диагонали. диагональ, которая по условию 12 см. будет являться биссектрисой. таким образом ромб разделится на два равных треугольника. проведём высоту в одном из треугольников. получится два равных прямоугольных треугольника, в каждом из которых один угол 30 градусов, другой 60. пользуясь определением косинуса 60 градусов и теоремой пифагора найдём высоту треугольника. она получится корень из 108. найдем площадь треугольника, она будет равна 6 корней из 108. значит, площадь всего ромба будет 12 корней из 108. так как угол между апофемой пирамиды и основанием 45 градусов, то пользуясь определением тангенса угла найдём, что высота также равна корень из 108. теперь найдём объём: 1/3*sqrt108*sqrt108*12=432 см. ^3
ответ: 1008
Пошаговое объяснение:
(5,25 × 2) + (6,31 × 3) +( 2 × 0,75) + (3 × 0,69) = (5,25+0,75) * (2+2) *(6,31+0,69)* * (3+3) = 6 * 4 * 7 * 6 = 1008