Игорь Грабарь - известный русский художник-пейзажист. Наверное, многие видели его замечательные картины, такие как "На озере", "Сентябрьский снег" или "Зимний пейзаж". "Февральская лазурь" - одно из самых завораживающих его произведений. Но ало кто знает, что эта картина была написана случайно. Художник просто нагнулся что-то поднять и увидел фантастической красоты пейзаж. Ослепляющее своей голубизной небо, белоствольная красавица-берёза и чуть сиреневатый снег поразили Грабаря. И он, окрылённый вдохновением, написал картину "Февральская лазурь".
Зимние пейзажи всегда очень красивы. Настолько, что хочется смотреть на них вечно, так же и на картину Грабаря. На полотне он изобразил поразительной красоты момент. Небо такое ярко-синее и бездонное сверху, а не горизонте светло-голубое, чистое. Плавный переход в цветах оживляет его, оно становится более объёмным. Снег словно искрится, он окрашен во множество разных оттенков. На солнце он нежный, беловато-розового цвета, а в тени зеленовато-голубой, чем то похожий на небо. На переднем плане изображена слегка изогнутая берёзка, которая раскинула свои ветви, словно в непонятном, но очень красивом танце. Художник очень живо изобразил русскую красавицу, и иногда кажется, что она стоит прямо перед нами. На её ветви мягко опускается пушистый снежный покров, а на земле лежат глубокие сугробы, что кажется, как будто ты сейчас провалишься.
На заднем плане мы видим целую берёзовую рощу. Деревья, словно наблюдают за неким спектаклем, в котором играет наша красавица и её друзья-соседи.
Белая берёзка - символ русских лесов, лазоревое небо и сиреневато-голубой снег. Всё так и дышит приятной морозной свежестью. Мне очень нравится картина "Февральская лазурь" своей живостью, такой, что она больше похожа на фотографию. Художник отлично предал радостное настроение февральского дня. Он нарисовал всё в такой сине-голубой гамме, в какой только можно передать дыхание зимы.
Мне кажется, что вот-вот и я окажусь там, среди белых берёзок и буду вдыхать тот чистый, прохладный воздух.
Умножим и разделим левую часть на 2sin(3x). При этом учитываем, что sin(3x) не равен нулю.
sin(3x) не равно 0
3x не равно пm
x не равно пm/3
m принадлежит Z
Выделяется формула: sin2x = 2•sinx•cosx
n - целое число
С учётом ограничений, n не равно 7p, p - целое число.
k - целое число
С учётом ограничений, k не равно 9p + 4, p - целое число.
ОТВЕТ:
n не равно 7m , n,m принадлежат Z
k не равно 9p + 4 , k,p принадлежат Z