В равностороннем треугольнике ABC на сторонах AC и BC отметили точки D и E такие, что CD=2AD, BE=2CE. Обозначим точку пересечения отрезков AE и BD через F. Чему равен угол BFC?
Пошаговое объяснение:
1) Введем прямоугольную систему координат .Пусть АВ=ВС=АС=1. Пусть FC∩АВ=Р .Пусть ЕК⊥АС, ВН⊥АС, РМ⊥АС.
2) Определим координаты точек .
А(0;0) ,В( ; ) ,С(1;0) ,Н(0,5 ;0) ,D( ;0) ,К( ;0) , Е(
3)Найдем координаты направляющих векторов: DB( ; ) , РС( ; ).
4)Найдем скалярное произведение векторов .
DB *РС= * + *( ) = ⇒вектор DB⊥PC ⇒∠BFC=90°.
=======================================
Пояснения( жуткие вычисления , слабонервным можно не читать).
1) Координаты точки Е. ΔКСЕ прямоугольный .
КЕ=СЕ*sin60= * .
КС=СЕ*cos60= = , поэтому АК= 1- → Е( ; ) .
2)Координаты точки В. ΔАВН- прямоугольный .
АН=НС= .
ВН=АВ*sin60=1* =
3)Ищем координаты точки Р
а)ΔВDC , по т. Менелая , , .
б)ΔАВD , по т. Менелая , , ,
AP= = .
в)ΔАРМ прямоугольный .
РМ=АР*sin60= * = .
АМ=АР*cos60= = → P ( ; ) .
Пусть x километров в час – скорость первого мопеда, а y километров в час – скорость второго мопеда. Если первый выехал на 2 ч раньше второго, то согласно условию задачи первый мопед будет ехать до встречи 4,5 ч, тогда как второй – 2,5 ч. За 4,5 ч первый проедет путь 4,5x километров, а за 2,5 ч второй проедет путь 2,5y километров. Отсюда 4,5x + 2,5y = 300 – первое уравнение.
Если второй выедет на 2 ч раньше первого, то согласно условию он будет ехать 5 ч, тогда как первый – 3 ч. Придём ко второму уравнению 3x + 5y = 300.
В итоге получаем систему уравнений:
{4,5x+2,5y=300
{3x+5y=300
Откуда получаем: x = 50, y = 30