М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
малика3024
малика3024
09.12.2021 05:41 •  Математика

Билет 1) 1) качество сила 2)использование средств легкой атлетики для воспитания силы билет2) 1) качество сила 2)использование средств гимнастики для воспитания силы билет3) 1) качество выносливость 2)использование средств видов спорта для воспитания специальной выносливости билет4) 1) качество
гибкость 2)использование средств гимнастики для воспитания гибкости билет5) 1)развитие качества ловкость 2)использование средств видов спорта для воспитания ловкости билет6) 1)развитие качества быстрота 2)использование средств легкой атлетики, подвижных игр, спортивных игр для воспитания быстроты
билет7) 1)формы организации физкультурно-спортивной деятельности 2)баскетбол во внеклассной работе (показать основные технические приемы билет8) 1)формы организации физкультурно-спортивной деятельности 2)волейбол во внеклассной работе (показать основные технические приемы)

👇
Ответ:
mebelru
mebelru
09.12.2021

2) Легкая атлетика, как и тренажеры в спорт зале наиболее быстрым образом развить силу в человеке. И тем самым войти в спорт легкой атлетики.

Билет 2

1) (смотри в первом билете)

2) Благодаря гимнастике ты становишься более гибким, сможешь выполнять более сложные упражнения.

Билет 3

1) Выносливость - это свойство организма, благодаря которому он может противостоять условиям жизни и окружающей среды.

2) Любой спорт развивает выносливость. Ошибки в спорте порождают выносливость в спорте. Что бы стать выносливым надо как можно чаще совершать ошибки, ты ее совершаешь и находишь путь к ее исправлению. Поэтому тебе будет не так уж страшно совершить ее в следующий раз. Конечно не все люди на земле выносливые. Это из-за того что они боятся совершать ошибки, и совершенно не занимаются спортом. Таких людей называют - лентяями.

Билет 4

1) Гибкость порождает координацию тела. Без координации ты становишься неуклюжим, и тебе не подвластны подвижные виды спорта.

2) Благодаря гимнастике ты становишься более гибким, сможешь выполнять более сложные упражнения.

Билет 5

На 5тый билет к сожалению ответить не могу.

Билет 6

1) Быстрота - состояние организма при котором он выполняет работу за более короткое время.

2) Легкая атлетика может накачать мышцы. Подвижные игры развить гибкость и ловкость. Для быстроты необходимо имети хорошие мышцы на ногах, ловкость и координацию.

Билет 7

1) я так понимаю что это и есть спортивные площадки и тренажерные залы. Возле моего дома есть спортивная площадка. Я посещаю ее каждый день. Ходим мы туда вместе с другом. На спортивной площадке большое количество тренажеров. Также есть стенд, где расписано расписание режима тренировок на вю неделю. На спорт площадке много молодежи, все тренируются. Мне кажется что самый лучший отдых - это отдых на спорт площадке!

2) (ответить не смогу)

Билет 8

1) (смотри в билете 7)

2) ответить не смогу.

оцените работу.

4,4(77 оценок)
Открыть все ответы
Ответ:

Поскольку равенство симметрично, можно без ограничения общности считать, что x ≤ y ≤ z. Положим y = x + k, а z = x + m, где k и m - неотрицательные целые. Тогда 4(x + y + z) = xy + yz + zx => 4(x + x + k + x + m) = x*(x + k) + x*(x + m) + (x + k)*(x + m) => 4(3x + k + m) = x^2 + kx + x^2 + mx + x^2 + mx + kx + km => 12x + 4(k + m) = 3x^2 + 2x(k + m) + km => 3x^2 + 2x(k + m) - 12x + km - 4(k + m) = 0 => 3x^2 + (2(k + m) - 12)x + km - 4(k + m) = 0. Получили квадратное относительно x уравнение. Находим дискриминант: D = (2(k + m) - 12)^2 - 12(km - 4(k + m)) = 4k^2 + 4km + 4m^2 - 48k - 48m + 144 - 12km + 48k + 48m = 4k^2 + 4m^2 - 8km + 144. Поскольку x у нас натуральное, дискриминант должен являться полным квадратом. Сразу видим, что поскольку 4k^2 + 4m^2 - 8km = 4(k^2 + m^2 - 2km) = 4(k - m)^2, то при k = m, D = 144. Тогда наше решение будет x(1,2) = -((2(k + m) - 12) ± √144)/6, отсюда x1 = (12 + 12 - 2(k + m))/6 = (24 - 2(k+m))/6 = (24 - 4k)/6. Отсюда видно, что x1 будет натуральным при k = 0 и k = 3. Его значения будут равны соответственно x1 = 4 и x1 = 2. Второй корень x2 =  (12 - 12 - 2(k + m))/6 = -(k + m)/3 отрицательный и нам не подходит. Тогда, в случае k = m, имеем следующие наборы возможных решений (x, y, z) = (4, 4, 4), (x, y, z) = (2, 5, 5). Непосредственной проверкой убеждаемся, что решение (2, 5, 5) нам не подходит. Т. о. в случае, когда k = m имеем одно решение x = y = z = 4. Обратимся снова к дискриминанту: D = 4k^2 + 4m^2 - 8km + 144. Пусть теперь k ≠ m. Рассмотрим выражение 4k^2 + 4m^2 - 8km = 4(k^2 + m^2 - 2km) = 4(k - m)^2 = 4(k - m)*(k - m). Как было сказано выше, D в нашем случае должен являться полным квадратом. Т. е. D = 4(k - m)*(k - m) + 144 = a^2 =>  4(k - m)*(k - m) = a^2 - 144 = (a - 12)*(a + 12). Отсюда имеем всего одну возможность: a - 12 = k - m и a + 12 = 4(k - m) = 4(a - 12) => 4a - a = 48 + 12 => 60 = 3a => a = 60/3 = 20. Т. о. дискриминант D = 4k^2 + 4m^2 - 8km + 144 = 20^2 = 400 => 4(k^2 + m^2 - 2km) + 144 = 400 => 4(k^2 + m^2 - 2km) = 256 => k^2 + m^2 - 2km = 256/4 = 64 => (k - m)^2 = 64 => k - m = 8 и k = m + 8. Т. о. при неотрицательных целых m, нам подходят k = m + 8. Ввиду симетрии уравнения, обратное ведет к одинаковым решениям. Общее решение имеет вид x(1,2) = -((2(k + m) - 12) ± √400)/6. Рассмотрим граничные значения k и m, при которых дискриминант остается неотрицательным. D ≥ 0 при |12 - 2(k + m)| ≤ 20. Этому условию соответствуют пары (k, m) = (8, 0), (9, 1), (10, 2), (11, 3) и (12, 4). Соответствующие значения x будут 16/6, 2, 8/6, 2/3 и 0. Из этих значений x нам подходит лишь одно x = 2. При x = 2, y = x+ k = 2 +9 = 11, z = x + m = 2 + 1 = 3 и мы получаем тройку (x, y, z) = (2, 11, 3). Проверим это решение. Левая часть уравнения 4(x + y + z) = xy + yz + zx  является четным числом, тогда как правая при нечетных y и z будет нечетной. Следовательно, данное решение нам не подходит. Т. о. получаем, что единственным решением данного уравнения является тройка чисел (x, y, z) = (4, 4, 4).

ответ: (x, y, z) = (4, 4, 4).

4,5(64 оценок)
Ответ:
ToPGoP1
ToPGoP1
09.12.2021

Поскольку равенство симметрично, можно без ограничения общности считать, что x ≤ y ≤ z. Положим y = x + k, а z = x + m, где k и m - неотрицательные целые. Тогда 4(x + y + z) = xy + yz + zx => 4(x + x + k + x + m) = x*(x + k) + x*(x + m) + (x + k)*(x + m) => 4(3x + k + m) = x^2 + kx + x^2 + mx + x^2 + mx + kx + km => 12x + 4(k + m) = 3x^2 + 2x(k + m) + km => 3x^2 + 2x(k + m) - 12x + km - 4(k + m) = 0 => 3x^2 + (2(k + m) - 12)x + km - 4(k + m) = 0. Получили квадратное относительно x уравнение. Находим дискриминант: D = (2(k + m) - 12)^2 - 12(km - 4(k + m)) = 4k^2 + 4km + 4m^2 - 48k - 48m + 144 - 12km + 48k + 48m = 4k^2 + 4m^2 - 8km + 144. Поскольку x у нас натуральное, дискриминант должен являться полным квадратом. Сразу видим, что поскольку 4k^2 + 4m^2 - 8km = 4(k^2 + m^2 - 2km) = 4(k - m)^2, то при k = m, D = 144. Тогда наше решение будет x(1,2) = -((2(k + m) - 12) ± √144)/6, отсюда x1 = (12 + 12 - 2(k + m))/6 = (24 - 2(k+m))/6 = (24 - 4k)/6. Отсюда видно, что x1 будет натуральным при k = 0 и k = 3. Его значения будут равны соответственно x1 = 4 и x1 = 2. Второй корень x2 =  (12 - 12 - 2(k + m))/6 = -(k + m)/3 отрицательный и нам не подходит. Тогда, в случае k = m, имеем следующие наборы возможных решений (x, y, z) = (4, 4, 4), (x, y, z) = (2, 5, 5). Непосредственной проверкой убеждаемся, что решение (2, 5, 5) нам не подходит. Т. о. в случае, когда k = m имеем одно решение x = y = z = 4. Обратимся снова к дискриминанту: D = 4k^2 + 4m^2 - 8km + 144. Пусть теперь k ≠ m. Рассмотрим выражение 4k^2 + 4m^2 - 8km = 4(k^2 + m^2 - 2km) = 4(k - m)^2 = 4(k - m)*(k - m). Как было сказано выше, D в нашем случае должен являться полным квадратом. Т. е. D = 4(k - m)*(k - m) + 144 = a^2 =>  4(k - m)*(k - m) = a^2 - 144 = (a - 12)*(a + 12). Отсюда имеем всего одну возможность: a - 12 = k - m и a + 12 = 4(k - m) = 4(a - 12) => 4a - a = 48 + 12 => 60 = 3a => a = 60/3 = 20. Т. о. дискриминант D = 4k^2 + 4m^2 - 8km + 144 = 20^2 = 400 => 4(k^2 + m^2 - 2km) + 144 = 400 => 4(k^2 + m^2 - 2km) = 256 => k^2 + m^2 - 2km = 256/4 = 64 => (k - m)^2 = 64 => k - m = 8 и k = m + 8. Т. о. при неотрицательных целых m, нам подходят k = m + 8. Ввиду симетрии уравнения, обратное ведет к одинаковым решениям. Общее решение имеет вид x(1,2) = -((2(k + m) - 12) ± √400)/6. Рассмотрим граничные значения k и m, при которых дискриминант остается неотрицательным. D ≥ 0 при |12 - 2(k + m)| ≤ 20. Этому условию соответствуют пары (k, m) = (8, 0), (9, 1), (10, 2), (11, 3) и (12, 4). Соответствующие значения x будут 16/6, 2, 8/6, 2/3 и 0. Из этих значений x нам подходит лишь одно x = 2. При x = 2, y = x+ k = 2 +9 = 11, z = x + m = 2 + 1 = 3 и мы получаем тройку (x, y, z) = (2, 11, 3). Проверим это решение. Левая часть уравнения 4(x + y + z) = xy + yz + zx  является четным числом, тогда как правая при нечетных y и z будет нечетной. Следовательно, данное решение нам не подходит. Т. о. получаем, что единственным решением данного уравнения является тройка чисел (x, y, z) = (4, 4, 4).

ответ: (x, y, z) = (4, 4, 4).

4,5(81 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ