М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
FUKCтическая
FUKCтическая
04.10.2020 04:33 •  Алгебра

Б)27-4х=х+31 в)7х+5=0 г)3х-(7х-2)=18 решите уравнение

👇
Ответ:
Roma765432112
Roma765432112
04.10.2020

Объяснение:

27-4х=х+31

-4х+х=31-27

-3х=4

х=-4/3

7х+5=0

7х=0-5

7х=-5

х=-5/7

3х-(7х-2)=18

3х-7х+2=18

-4х=18-2

-4х=16

х=-4

4,7(73 оценок)
Открыть все ответы
Ответ:
Каракоз11111
Каракоз11111
04.10.2020

ответ:

объяснение:

в таблице простых чисел, то есть таких, которые делятся только на 1 и на себя, числа 7, 11 и 13 расположены рядом (см. таблицу простых чисел на стр. 363). их произведение равно:

7 ∙ 11 ∙ 13=1001 = 1000 + 1.

заметим пока, что 1000 + 1 делится и на 7, и на 11, и на 13. далее, если любое трехзначное число умножить на 1001, то произведение запишется такими же цифрами, как и множимое, только повторенными два раза.

пусть

— какое-либо трехзначное число (а, ь и с — цифры этого числа). умножим его на 1001:

следовательно, все числа вида аbсаbс делятся на 7, на 11 и на 13. в частности, делится на 7, 11 и 13 число           999 999, или, иначе, 1000 000—1.

указанные закономерности позволяют свести решение вопроса о делимости многозначного числа на 7 или на 11,

или на 13 к делимости на них некоторого другого числа — не более чем трехзначного.

требуется, положим, определить, делится ли число 42 623 295 на 7, 11 и 13. разобьем данное число справа налево на грани по 3 цифры. крайняя левая грань может и не иметь трех цифр. представим теперь данное число в гаком виде:

42 623 295 = 295 + 628 ∙ 1000 + 42 ∙ 1 000 000,

или (аналогично тому, как это мы делали при рассмотрении признака делимости на 11):

42 623 295 = 295 + 623 (1000 + 1 —1) + 42(1 — 1 + 1) = (295 — 623 + 42) + [623 (1000 + 1) + 42 (1000 000 —

число в квадратной скобке обязательно делится и на 7, и на 11, и на 13. значит, делимость испытуемого числа на

7, 11   и   13 полностью определяется делимостью   числа, заключенного в первой круглой скобке.

рассматривая каждую грань испытуемого числа как самостоятельное число, можно высказать следующий объединенный признак делимости сразу на три числа, 7, 11 и   13:

вели разность сумм граней данного числа, взятых через одну, делится на 7 или на 11, или на 13, то и данное число делится соответственно на 7 или на 11, или на 13.

вернемся к числу 42 623 295. определим, на какое из чисел 7, 11 или 13 делится разность сумм граней данного числа:

(295 + 42)—623 = —286.

число 286 делится на 11 и на 13, а на 7 оно не делится. следовательно, число 42 623 295 делится на 11 и на 13, но на 7 не делится.

очевидно, что делимость на 7, 11 и 13 четырех-, пяти — и шестизначных чисел, то есть чисел, разбивающихся всего лишь на 2 грани (практически более частый случай), определяется делимостью на 7, 11 и 13 разности граней данного числа. так, например, легко установить, что 29 575 делится на 7 и на 13, но не делится на 11. действительно, разность граней равна

575—29 = 546,

а число 546 делится на 7 и на 13 и не делится на 11.

. устанавливая объединенный признак делимости на 7, 11 и 13, мы оперировали числом, разбивавшимся на 3 грани. проведите обоснование этого признака на примере числа, разбивающегося на 4 грани по 3 цифры справа налево.

4,5(68 оценок)
Ответ:
Dgkdtjclhvkyulvlu
Dgkdtjclhvkyulvlu
04.10.2020
11sin^2 a + 9cos^2 a + 8sin^4 a + 2cos^4 a =
= 9sin^2 a + 9cos^2 a + 2sin^2 a + 6sin^4 a + 2(sin^4 a + 2cos^4 a) = (*)
Заметим, что
1) 9sin^2 a + 9cos^2 a = 9(sin^2 a + cos^2 a) = 9
2) sin^4 a + cos^4 a = sin^4 a + 2sin^2 a*cos^2 a + cos^4 a - 2sin^2 a*cos^2 a = 
= (sin^2 a + cos^2 a)^2 - 2sin^2 a*cos^2 a = 1 - 1/2*(4sin^2 a*cos^2 a)
Подставляем
(*) = 9 + 2sin^2 a + 6sin^4 a + 2 - 4sin^2 a*cos^2 a =
= 11 + 4sin^2 a - 2sin^2 a + 6sin^4 a  - 4sin^2 a*cos^2 a =
= 11 - 2sin^2 a + 6sin^4 a + 4sin^2 a*(1 - cos^2 a) =
= 11 - 2sin^2 a + 6sin^4 a + 4sin^4 a = 11 - 2sin^2 a + 10sin^4 a =
= 10(sin^4 a - 2*1/10*sin^2 a + 1/100) - 1/10 + 11 =
= 10(sin^2 a - 1/10)^2 + 109/10
Минимальное значение квадрата равно 0, а всего выражения 109/10.
4,5(17 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ