В решении.
Объяснение:
Решить уравнения:
1) 10/(x+2) + 9/x = 1:
Умножить уравнение на х(х+2), чтобы избавиться от дробного выражения, надписать над числителями дополнительные множители:
=х*10 + (х+2)*9 = х(х+2)*1
Раскрыть скобки:
10х + 9х +18 = х² + 2х
Привести подобные члены:
-х²-2х+19х+18=0
-х²+17х+18=0/-1
х²-17х-18=0, квадратное уравнение, ищем корни:
D=b²-4ac =289+72=361 √D= 19
х₁=(-b-√D)/2a
х₁=(17 - 19)/2
х₁= -2/2
х₁= -1;
х₂=(-b+√D)/2a
х₂=(17 + 19)/2
х₂=36/2
х₂=18;
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
2) x/(x+7) - (x-7)/(x-7)= (63-5x)/(x²-49)
Пусть одна сторона этих прямоугольников x, а другая y.
У одного прямоугольника периметр P = 2(x + y) = 20
x + y = 10; x = 10 - y.
Приставим прямоугольники друг к другу в цепочку сторонами x.
Получим длинный прямоугольник с сторонами x и 7y
P = 2(x + 7y) = 2(10 - y + 7y) = 2(10 + 6y) = 100
10 + 6y = 50
6y = 40; y = 40/6 = 20/3 = 6 2/3; x = 10 - y = 3 1/3 = 10/3
Прямоугольник со сторонами 10/3 и 20/3 имеет периметр 20,
а 7 таких прямоугольников, выстроенных в цепочку, дают прямоугольник с периметром 100.
2) Сумма 100 = 3*33 + 1 содержит 34 хороших слагаемых.
Это и есть максимум.
3) Бред - треугольник не может быть ромбом.