Обозначим скорость Ани х м/мин, а скорость Максима бегом у м/мин.
Расстояние от дома до школы обозначим S.
1) Если Максим выходит через 3 мин после Ани, то он догоняет ее в середине пути.
За эти 3 мин Аня пройдет 3x м.
Пусть он догоняет ее за t1 мин.
y*t1 = S/2, то есть S = 2y*t1
За эти t1 мин Аня пройдет ещё x*t1 м.
Всего Аня пройдет x*(t1+3) м, и это тоже середина пути.
S = 2x*(t1+3)
2) Если Максим выходит через 4 мин после Ани, то он догонит ее в таком месте, что ему останется идти со скоростью Ани столько же времени, сколько он до этого бежал.
То есть, на то, чтобы догнать Аню, он затратит половину от времени всего пути.
Обозначим расстояние от дома до места встречи S1 м, а время t2 мин.
S1 = y*t2
Аня за 4 мин пройдет 4х м, а потом за t2 мин ещё x*t2 м. Всего
S1 = x*(t2+4)
Оставшийся путь S-S1 они пройдут вдвоем со скоростью х м/мин за тоже время t2 мин.
1) |x - 3| + 2|x + 1| = 4 * Если x < -1, то x - 3 < -4, |x - 3| + 2|x + 1| > 4, на этом промежутке корней нет. * Если x > 3, то x + 1 > 4, |x - 3| + 2|x + 1| > 2 * 4 > 4, на этом промежутка корней тоже нет. * Если -1 <= x <= 3, то x - 3 <= 0, x + 1 >= 0, и можно раскрыть модули: -(x - 3) + 2(x + 1) = 4 -x + 3 + 2x + 2 = 4 x + 5 = 4 x = -1 - корень попадает в отрезок [-1, 3], подходит. ответ. x = -1.
2) |5 - 2x| + |x + 3| = 2 - 3x В левой части стоит сумма модулей - величина неотрицательная, значит то, что стоит в правой части, тоже неотрицательно; 2 - 3x >= 0, x <= 2/3. При таких ограничениях 5 - 2x >= 5 - 2 * 2/3 > 0, можно один модуль убрать: 5 - 2x + |x + 3| = 2 - 3x |x + 3| = -3 - x |x + 3| = -(x + 3) Это выполнено, если x + 3 <= 0, x <= -3. ответ. x <= -3.
3) |5 - x| + |x + 1| = 10 Заметим, что если x - корень уравнения, то и 4 - x - тоже корень. Тогда все корни симметричны относительно x = 2. Будем решать при x >= 2, а всё остальное найдём из симметрии. * 2 <= x <= 5: 5 - x >= 0, x + 1 >= 0. 5 - x + x + 1 = 10 6 = 10 - корней нет * x > 5: 5 - x < 0, x + 1 > 0 x - 5 + x + 1 = 10 2x - 4 = 10 2x = 14 x = 7 - попадает в нужный промежуток, корень. Второй корень, симметричный относительно 2: x = 4 - 7 = -3. ответ: -3, 7.
4) |4 - x| + |x - 2| = 2 Неравенство треугольника: |a| + |b| >= |a + b|, равенство достигается, если a, b одного знака, иначе говоря, если ab >= 0. |4 - x| + |x - 2| >= |4 - x + x - 2| = 2 (4 - x)(x - 2) >= 0 2 <= x <= 4 - ответ
5) |x - 2| - |5 + x| = 3 * x < -5: x - 2 < 0, 5 + x < 0 2 - x + x + 5 = 3 8 = 3 - неверно, корней нет * x > 2: x - 2 > 0, x + 5 > 0 x - 2 - x - 5 = 3 -7 = 3 - неверно. корней нет * -5 <= x <= 2: x - 2 <= 0, x + 5 >= 0 2 - x - x - 5 = 3 -3 - 2x = 3 2x = -6 x = -3 - попадает в промежуток, подходит. ответ. -3.
6) |-x + 2| = 2x + 1 -x + 2 = 2x + 1 или x - 2 = 2x + 1 3x = 1 или x = -3 x = 1/3 или x = -3. Проверка: x = 1/3: |-1/3 + 2| = 2/3 + 1, 1 2/3 = 1 2/3, верно. x = -3: |...| = 2 * (-3) + 1 = -5 < 0, так не бывает. ответ. 1/3
7) |x^2 - 1| = 5 - x Левая часть неотрицательна, поэтому и правая тоже неотрицательна, 5 - x >= 0, x <= 5. При таких x обе части уравнения неотрицательны, и можно возвести в квадрат: |x^2 - 1|^2 = (5 - x)^2 (x^2 - 1)^2 - (5 - x)^2 = 0 (x^2 - 1 - 5 + x)(x^2 - 1 + 5 - x) = 0 (x^2 + x - 6)(x^2 - x + 4) = 0 (x + 3)(x - 2) = 0 (вторая скобка корней не имеет) x = -3 или x = 2. ответ. -3, 2.
8) |x^2 + x| + 3x - 5 = 0 |x^2 + x| = 5 - 3x x^2 + x = 5 - 3x или x^2 + x = 3x - 5 x^2 + 4x - 5 = 0 или x^2 - 2x + 5 = 0 (x + 2)^2 = 9 или (x - 1)^2 = -4 - второе корней не имеет x = -2 +- 3 x = -5 или x = 1 Проверка. x = -5: |x^2 + x| + 3x - 5 = |25 - 5| - 15 - 5 = 0 - ok. x = 1: |x^2 + x| + 3x - 5 = |1 + 1| + 3 - 5 = 0 - ok. ответ. -5, 1.
9) x^2 + |x - 2| - 10 = 0 |x - 2| = 10 - x^2 >= 0, x ∈ [-√10, √10]. * √10 <= x < 2: x - 2 < 0, раскрываем модуль: x^2 - x + 2 - 10 = 0 x^2 - x - 8 = 0 x^2 - x + 1/4 = 8 1/4 = 33/4 (x - 1/2)^2 = 33/4 = (√33 / 2)^2 x = (1 +- √33)/2 Корень со знаком "+": (1 + √33)/2 > (1 + 5)/2 > 2, не подходит. Корень со знаком "-": он отрицательный, кроме того, (1 - √33)/2 > (1 - 6)/2 > -3 > -√10, подходит. * 2 <= x <= √10: x - 2 >= 0. x^2 + x - 2 - 10 = 0 x^2 + x - 12 = 0 x = -4 или x = 3. В отрезок [2, √10] попадает только x = 3. ответ. (1 - √33)/2, 3.
10) |x^2 - 4x| = 5 x^2 - 4x = +-5 x^2 - 4x + 4 = 4 +-5 (x - 2)^2 = 9 или -1 (во втором случае корней нет) (x - 2)^2 = 3^2 x = 2 +- 3 x = -1 или x = 5. ответ. -1, 5 Нажми, чтобы рассказать другим, насколько ответ полезен
12 минут.
Объяснение:
Решил-таки эту трудную задачу!
Обозначим скорость Ани х м/мин, а скорость Максима бегом у м/мин.
Расстояние от дома до школы обозначим S.
1) Если Максим выходит через 3 мин после Ани, то он догоняет ее в середине пути.
За эти 3 мин Аня пройдет 3x м.
Пусть он догоняет ее за t1 мин.
y*t1 = S/2, то есть S = 2y*t1
За эти t1 мин Аня пройдет ещё x*t1 м.
Всего Аня пройдет x*(t1+3) м, и это тоже середина пути.
S = 2x*(t1+3)
2) Если Максим выходит через 4 мин после Ани, то он догонит ее в таком месте, что ему останется идти со скоростью Ани столько же времени, сколько он до этого бежал.
То есть, на то, чтобы догнать Аню, он затратит половину от времени всего пути.
Обозначим расстояние от дома до места встречи S1 м, а время t2 мин.
S1 = y*t2
Аня за 4 мин пройдет 4х м, а потом за t2 мин ещё x*t2 м. Всего
S1 = x*(t2+4)
Оставшийся путь S-S1 они пройдут вдвоем со скоростью х м/мин за тоже время t2 мин.
S - S1 = x*t2
Сведём это всё в систему:
{ S = 2y*t1
{ S = 2x*(t1+3)
{ S1 = y*t2
{ S1 = x*(t2+4)
{ S - S1 = x*t2
Из двух последних уравнений получаем:
S = S1 + x*t2 = x*(t2+4) + x*t2 = x*(t2+t2+4) = 2x*(t2+2)
Из второго уравнения:
S = 2x*(t1+3)
Приравниваем правые части этих уравнений:
2x*(t2+2) = 2x*(t1+3)
t2+2 = t1+3
t2 = t1+1
Теперь возьмём 1 и 2 уравнения системы:
{ S = 2y*t1
{ S = 2x*(t1+3)
Приравниваем их правые части:
2y*t1 = 2x*(t1+3)
y/x = (t1+3)/t1 (*)
А теперь возьмём 3 и 4 уравнения системы:
{ S1 = y*t2 = y*(t1+1)
{ S1 = x*(t2+4) = x*(t1+1+4) = x*(t1+5)
Опять приравниваем правые части:
y*(t1+1) = x*(t1+5)
y/x = (t1+5)/(t1+1) (**)
И, наконец, сведём вместе уравнения (*) и (**):
{ y/x = (t1+3)/t1
{ y/x = (t1+5)/(t1+1)
И, опять же, приравниваем правые части:
(t1+3)/t1 = (t1+5)/(t1+1)
(t1+3)(t1+1) = t1*(t1+5)
t1^2 + 4t1 + 3 = t1^2 + 5t1
3 = t1
Запишем более привычно:
t1 = 3 мин - за это время Максим догонит Аню, если он опаздывает на 3 мин.
t2 = t1+1 = 4 мин - за это время Максим догонит Аню при опоздании на 4 мин.
Нам нужно узнать, за какое время Аня доходит до школы, то есть S/x.
S = 2x*(t1+3)
S/x = 2(t1+3) = 2(3+3) = 2*6 = 12 мин.