Объяснение:
выражение в квадратном корне должно давать положительный результат, иначе выражение не
имеет смысла
1) √х. х не должен быть –1 или каким-то другим отрицательным числом, поэтому выражение имеет смысл при х (0; +∞)
2) √х². Здесь х также может быть и отрицательным, поскольку он возведён во вторую степень, которая даёт положительный результат в любом случае поэтому: х (–∞; +∞)
3) √–х. х не должен быть положительным, поскольку при положительном х у нас получится отрицательный итог, например при х=1 =√–1, это недопустимо, поэтому х должен быть: х≤0 и значение следующие: х (–∞; 0)
5) √25х. х должен быть 0 или положительное значение:
х≥0, поэтому х (0; +∞)
4) √–3х. х должен быть отрицательным, чтобы выражение давало положительный результат:
х (–∞; –1)
6) √0,01х, х≥0; х (0; +∞)
7)
х ≥ 0; х (–∞; 0)
8)
х может быть как положительным так и отрицательным, поскольку он возведён во вторую степень и значение выражения всегда будет положительным: х (–∞; +∞)
1) Повторяется цифра 1. Это 4 варианта:
11ххх, 1х1хх, 1хх1х, 1ххх1.
В каждом варианте вместо первой х можно поставить любую цифру из 9:
0, 2, 3, 4, 5, 6, 7, 8, 9.
Вместо второй х - любую их 8 оставшихся, вместо третьей х - любую из 7.
Всего 4*9*8*7 = 2016 вариантов.
2) Повторяется цифра 0. Это 6 вариантов:
100хх, 10х0х, 10хх0, 1х00х, 1х0х0, 1хх00.
В каждом варианте вместо первой х можно поставить любую из 8 цифр
2, 3, 4, 5, 6, 7, 8, 9.
Вместо второй х - любую из оставшихся 7 цифр.
Всего 6*8*7 = 336 вариантов.
3) Повторяется цифра 2. Это 6 вариантов:
122хх, 12х2х, 12хх2, 1х22х, 1х2х2, 1хх22.
В каждом варианте вместо первой х можно поставить любую из 8 цифр
0, 3, 4, 5, 6, 7, 8, 9.
Вместо второй х - любую из оставшихся 7 цифр.
Всего 6*8*7 = 336 вариантов.
4 - 10) Повторяются цифры 3 - 9. Это каждый раз по 336 вариантов.
Всего получается 2016 + 9*336 = 2016 + 3024 = 5040 вариантов.