А) q=12/-3=-4 б) c3=c2*q=12*(-4)=-48 в) c(n)=c1*q^(n-1)=-3*(-4)^(n-1)=3/4*(-4)^n г) c6=3/4*(-4)^6=3*4^5=3*1024=3072 д) Так как для произвольного члена прогрессии c(n) не выполняется ни равенство с(n+1)>c(n), ни равенство c(n+1)<c(n), то прогрессия не является ни возрастающей, ни убывающей. e) Это прогрессия -3, -12, -48,, т.е. прогрессия c c1=-3 и знаменателем q=4 ж) Одна, указанная выше. Другие прогрессиии имеют другой знаменатель q, поэтому даже если у них с1=-3, то другие члены с нечётными номерами не будут совпадать с членами данной прогрессии.
-7==-6==-5==-4==-3==-2==-1==0==1==2==3==4==5==6==7 Кузнец добрыгивает до 7 влево и вправо то есть -7 и 7 есть точки Пусть он прыгает 6 вправо или лево - теперь он может прыгнуть в -7 или 7 или в -5 и 5 Пусть прыгает до 5 оттуда может 6-м прыжком прыгнуть в 6 или -6 (здесь мы знаем) или 4 и -4 отсюда в 3 или -3 До 4-х прыгает отвюда может попасть в (5 -5 тут знаем) или -3 и 3 то есть модет прыгнуть туда - сюда это будет -3 и 3 или два прыжка на 1 и -1 То есть точки -7 -5 -3 -1 1 3 5 7 может допрыгать (8 точек) В четные попость не может, допрыгать до четной на четное количество прыжков а у нас 7 нечетное
б) c3=c2*q=12*(-4)=-48
в) c(n)=c1*q^(n-1)=-3*(-4)^(n-1)=3/4*(-4)^n
г) c6=3/4*(-4)^6=3*4^5=3*1024=3072
д) Так как для произвольного члена прогрессии c(n) не выполняется ни равенство с(n+1)>c(n), ни равенство c(n+1)<c(n), то прогрессия не является ни возрастающей, ни убывающей.
e) Это прогрессия -3, -12, -48,, т.е. прогрессия c c1=-3 и знаменателем q=4
ж) Одна, указанная выше. Другие прогрессиии имеют другой знаменатель q, поэтому даже если у них с1=-3, то другие члены с нечётными номерами не будут совпадать с членами данной прогрессии.