1.
a) P=P₁+P₂+P₃=0,15+0,25+0,4=0,8 вероятность попадания в 1 из 3-х областей
б) 1-Р=1-0,8=0,2 вероятность промазать (т.к. событие противоположное)
2.
Посчитаем от обратного.
Всего 6*6=36 возможных события
6 вариантов выпадения одинакового числа очков.
6/36 =1/6 вероятность выпадения одинакового числа очков.
Р=1-1/6=5/6 вероятность выпадения разного числа очков
3.
6*6=36 возможных событий
Выпадение очков меньше 3:
{1; 2}, {2; 1} - 2 варианта
Р=2/36=1/18 вероятность выпадения очков меньше 3-х
4.
6*6=36 событий
{6:6} - 1 событие выпадет 2 шестерки
Р=1/36 вероятность, что выпадет 2 шестерки
5.
Более 3-х очков: 4, 5, 6
Менее 3-х очков: 1,2,3
Р=3/6*3/6=1/4 вероятность, что на первой кости выпало
более трех очков, а на второй — менее трех
6.
Вероятность, что выпадет шестерка:
1/6
Вероятность, что выпадут 3 шестерки подряд:
Р=1/6*1/6*1/6=1/216
Объяснение:
Решение. Пусть сторона правильного треугольника, который нарисовала Маша, будет х см, а сторона квадрат в k раз больше и равна (k ∙ х) см. Периметр треугольника найдём по формуле: Р = 3 ∙ х. Площадь квадрата найдём по формуле: S = (k ∙ х)². Из условия задачи известно, что площадь квадрата равна квадрату периметра треугольника, то есть S = Р². Зная это, составляем уравнение: (k ∙ х)² = (3 ∙ х)²; k = 3. Число k = 3 показывает, во сколько раз сторона квадрата больше стороны треугольника. ответ: сторона квадрата, который нарисовала Маша, больше стороны треугольника в три раза
Объяснение:
Умножим и числитель и знаменатель на √6.
3*√6/√6*√6=3√6/6