Изобразите на координатной плоскости множество точек координаты которых являются решениями неравенства (х+1)^2+(у+1)^2< 4 и установите сколько пар (х; у) целых чисел являются его решением
путь время скорость по теч 18 км 3,25 10+х прот т еч 14 км 10-х перед числом 3,25 фигурная скобка на 2 строчки пусть х км/ч - собственная скорость лодки, (10+х) км/ч скорость лодки по течению, (10-х) км/ч скорость лодки против течения 18/(10+х)+14/(10-х)=3,25 180-18х+140+14х=3,25(100-х²) 3,25х²-4х-5=0 D=16+65=81 х=(4+9)/6,5=2 или х= (4-9)/6,5 не удовлетворяет условию задачи ответ 2 км/ч
V₁= 1/t₁ (1 круг за t₁ минут)
t₂= t₁+5
V₂= 1/(t₁+5)
S₂= S₁-1 (кругов)
V₂= S₂/60 <=> 1/(t₁+5) = (S₁-1)/60
S₁= V₁·60 <=> S₁= 60/t₁
1/(t₁+5) = [(60/t₁) -1]/60 <=> (60-t₁)/60t₁ - 1/(t₁+5) =0 <=>
[(60-t₁)(t₁+5) -60t₁] / 60t₁(t₁+5) =0 <=>
---
60t₁ -t₁² +300 -5t₁ -60t₁ =0 <=> t₁² +5t₁ -300 =0 <=>
[ t₁= -20 (t₁>0)
[ t₁=15
---
ответ:
Один карт проходил круг за 15 мин, другой - за 20 мин.