Объяснение: Точки А, В, С лежат на ожной прямой. Найти а.
1) А(1;2), В(4;8), С(а;6)
Составим уравнение прямой АВ:
(х-х₁)/(х₂-х₁)=(у-у₁)/(у₂-у₁), ⇒ (х-1)/(4-1)=(у-2)/8-2), ⇒ (х-1)/3=(у-2)/6 ⇒6(х-1)=3(у-2), ⇒ 6х-6=3у-6, т.е. 6х=3у или у=2х (уравнение прямой, на которой лежат эти 3 точки), значит координаты точки С(а;6) удовлетворяют этому уравнению: 6=2·а, ⇒а=6:2=3, т.е. а=3
2) А(2;5), В(-1;а), С(3;7).
Аналогично составим уравнение прямой АС:
(х-2)/(3-2)=(у-5)/(7-5), ⇒х-2=(у-5)/2 ⇒2х-4=у-5 ⇒у=2х+1 (уравнение прямой, на которой лежат эти 3 точки), значит координаты точки В(-1;а) удовлетворяют этому уравнению: а=2·(-1)+1 =-1, т.е. а= -1
3) А(0;2), В(1;а), С(а;5)
Аналогично составим уравнение прямой АС: (х-0)/(а-0)=(у-2)/(5-2) ⇒
х/а=(у-2)/3 ⇒3х=а(у-2) ⇒ 3х=ау-2а ⇒ау=3х+2а ⇒у=3х/а +2 (уравнение прямой, на которой лежат эти 3 точки), значит координаты точки В(1;а) удовлетворяют этому уравнению: а= 3·1/а+2 ⇒а²=2а+3 ⇒
а²-2а-3 =0 ⇒ D=4+12=16 >0 ⇒a₁= (2+4)/2=3, a₂=(2-4)/2=-1
т.е. при а=-1 и а=3
Однородное уравнение. Делим обе части на 25ˣ ⇒
125•( 16ˣ/25ˣ ) - 180•( 20ˣ/25ˣ ) + 64•( 25ˣ/25ˣ ) = 0125•( 4/5 )²ˣ - 180•( 4/5 )ˣ + 64 = 0Пусть ( 4/5 )ˣ = а , а > 0 , тогда125а² - 180а + 64 = 0D = 180² - 4•125•64 = ( 4•9•5 )² - 4•5•5•5•4•4•4 = 16•25•( 81 - 80 ) = 16•25 = 20²a₁ = ( 180 - 20 ) / 250 = 160/250 = 16/25a₂ = ( 180 + 20 ) / 250 = 200/250 = 4/5Обратна замена: а₁ = 16/25 ⇒ ( 4/5 )ˣ = 16/25 ⇒ ( 4/5 )ˣ = ( 4/5 )² ⇒ х = 2а₂ = 4/5 ⇒ ( 4/5 )ˣ = 4/5 ⇒ ( 4/5 )ˣ = ( 4/5 )¹ ⇒ х = 1ОТВЕТ: х = 1 ; 2