Обозначим скорость лодки в стоячей воде через x , тогда скорость лодки по течению реки равна (x + 3,5) км/ч , а скорость лодки против течения равна (x - 3,5) км/ч .
Лодка шла по течению реки 2,4 ч , значит путь равный :
S₁ = 2,4 * (x + 3,5) км
Лодка шла против течения реки 3,2 ч , значит путь равный :
S₂ = 3,2 * (x - 3,5) км
Путь, пройденный по течению, оказался на 13,2 км больше чем путь, пройденный против течения.
1) по теореме косинусов имеем: a² = b² + c² - 2bc cos a = 25 - 24 cos 135° = 25 + 12√2 a = √(25 + 12√2) по теореме синусов, a / sin a = b / sin b sin b = sin a · b / a = √2 / 2 · 3 / √(25 + 12√2) = 3 / √(50 + 24√2) ∠b = arcsin(3 / √(50 + 24√2)) ∠c = 180° - 135° - ∠b = 45° - arcsin(3 / √(50 + 24√2)) 2) ∠a = 180° - ∠b - ∠c = 65° по теореме синусов b / sin b = a / sin a b = a sin b / sin a = 24.6 · √2 / 2 / (sin 65°) = 123√2 / (10 sin 65°) по теореме синусов c / sin c = a / sin a c = a sin c / sin a = 24.6 ·sin 70° / sin 65°
Обозначим скорость лодки в стоячей воде через x , тогда скорость лодки по течению реки равна (x + 3,5) км/ч , а скорость лодки против течения равна (x - 3,5) км/ч .
Лодка шла по течению реки 2,4 ч , значит путь равный :
S₁ = 2,4 * (x + 3,5) км
Лодка шла против течения реки 3,2 ч , значит путь равный :
S₂ = 3,2 * (x - 3,5) км
Путь, пройденный по течению, оказался на 13,2 км больше чем путь, пройденный против течения.
Составим и решим уравнение :
2,4 * (x + 3,5) - 3,2 * (x - 3,5) = 13,2
2,4x + 8,4 - 3,2x + 11,2 = 13,2
2,4x - 3,2x = 13,2 - 11,2 - 8,4
- 0,8x = - 6,4
x = - 6,4 : (- 0,8)
x = 8 км/ч - скорость лодки в стоячей воде