Нет, нельзя. Возьмем любых 11 подряд идущих чисел на круге. Сумма с 1-го по 10-ое делится на 11. Сумма со 2-го по 11 тоже делится на 11. Это значит, что 1-ое и 11-ое числа имеют одинаковые остатки при делении на 11, т.к. 9 чисел со 2-го по 10-ое у этих двух сумм общие. А это значит что любые два числа, между которыми есть 9 чисел, имеют одинаковые остатки при делении на 11. Т.е. если разделить все числа на группы по 10 чисел (кроме последней), то в каждой группе, например, первые элементы имеют одинаковые остатки. Этих групп всего не менее, чем [1991/10]=199. Т.е. должно быть не менее 199 чисел с одинаковым остатком. Но для каждого остатка от 0 до 10 среди чисел от 1 до 1991 есть всего 1991/11=181 чисел c этим остатком. Противоречие.
Двузначное число, записанное цифрами a и b это число 10a+b Умножение на 10 даст трехзначное число 100a+10b Это число на 3 меньше, чем (a+b)³ Составляем равенство 100a+10b+3=(a+b)³
Так как a и b - цифры от 0 до 9, но а≠0, иначе не получим двузначного числа. 1≤a≤9 0≤b≤9 Далее решаем методом перебора с ограничением.
Слева число больше 100, значит и справа тоже должно быть больше 100 Значит случаи a=1 b=1 a=1 b=2 a=1 b=3 a=2 b=1 a=2 b=2
a=3 b=1 не подходят, справа получим число меньшее 100
a=1 b=4 100+40+3 ≠(1+4)³ a=1 b=5 100+50+3≠(1+5)³
a=2 b=3 200+30+3≠(2+3)³
Замечаем, что число слева оканчивается 3 Значит проверим кубы чисел и найдем то, которое дает 3 на конце.
Это 343=7³=(3+4)³ Проверим, может ли a=3, b=4 Получим слева 343 и справа 343 Вот и ответ. 34 34·10=340 340+3=343=(3+4)³
3,7
Объяснение: