Тогда модуль будем раскрывать на интервалах: 1) 2) 3)
Значит, на первом интервале строим прямую у=х, сдвинутую на 8 единиц вверх; на втором - прямую у=-х, сдвинутую на 2 единицы вверх; на третьем - прямую у=х.
Прямая y=m параллельна оси х и проходит через точку (m; 0).
Проанализировав взаимное расположение графиков получим: - при m<1 - 1 пересечение - при m=1 - 2 пересечения - при 1<m<5 - 3 пересечения - при m=5 - 2 пересечения - при m>5 - 1 пересечение
Дано: sinx-siny=m; cosx+cosy=n. Найти: sin(x-y) и cos(x-y). Решение: 1. Воспользуемся формулами разность синусов и сумма косинусов: Заметим, что оба равенства содержат один и тот же член: . Выразим его из обоих равенств: В получившихся равенствах левые части равны, значит, равны и правые части: . Преобразуем данное равенство: Теперь используем формулы понижения степени синуса и косинуса: Преобразуем данное равенство: n²(1-cos(x-y))=m²(1+cos(x-y)); n²-n²cos(x-y)=m²+m²cos(x-y); m²cos(x-y)+n²cos(x-y)=n²-m²; cos(x-y)(m²+n²)=n²-m²; Используя основное тригонометрическое тождество, выразим sin(x-y): ответ: