Всю работу примем за 1.
Пусть две бригады, работая вместе, выполнят работу за х дней. Тогда
за х+9 дней выполнит работу 1-я бригада, работая отдельно, а за х+4 дня - 2-я бригада.
1 (/х+9) - производительность труда 1-ой бригады, 1/(х+4) - произв. 2-ой бригады, 1/х - производительность двух бригад.
1/(х+9) + 1/(х+4) = 1/х, х больше 0.
Умножим обе части уравнения на общий знаменатель х(х+9)(х+4)
х^2 + 4x+x^2+9x-x^2 - 4x - 9x - 36 = 0
x^2 - 36 = 0
x=6 и x=-6
Т.к. х больше 0, то х=6
6+9=15. ответ: за 15 дней.
Умножаем на -1, при этом меняется знак неравенства
x(x - 7) < 0
По методу интервалов x ∈ (0; 7)
2) x^2*(3 - x)(x + 1) <= 0
Умножаем на -1, при этом меняется знак неравенства
x^2*(x - 3)(x + 1) >= 0
x^2 > 0 при любом x =/= 0. Поэтому x = 0 - это решение.
Делим на x^2
(x - 3)(x + 1) >= 0
По методу интервалов x ∈ (-oo; -1] U [3; +oo)
Добавим решение x=0 и получим:
x ∈ (-oo; -1] U [0] U [3; +oo)
3) 3x^2 - 7x + 2 < 0
D = 7^2 - 4*3*2 = 49 - 24 = 25 = 5^2
x1 = (7 - 5)/6 = 2/6 = 1/3; x2 = (7 + 5)/6 = 12/6 = 2
По методу интервалов x ∈ (1/3; 2)