Всё решается очень просто. Применяется теорема Виета для первого уравнения (это есть в любом учебнике математики)
х(квадрат)+5х-7=0
х1*х2=-7
х1+х2=-5
Если надо составить уравнение с корнями 1/х1 и 1/х2, то надо сделать несколько преобразований:
Если х1*х2=-7, то применяя теорему Виета уже для второго уравнения, получаем, что (1/х1)*(1/х2)=-1/7
Тоже самое если сложить два корня:
(1/х1)+(1/х2)=(х1+х2)/(х1*х2)=-5/(-7)=5/7
Значит уравнение вот такое a^2-(5/7)a-(1/7)=0
Можно последнее уравнение умножить на 7, чтобы были целые коэффиценты.
Вот и всё решение.
Рассмотрим остатки от деления записанных чисел на 3.
Могут ли три из них быть равными 0? Нет, т.к. в таком случае 2 числа стояли бы рядом, и их сумма делилась бы на 3.
Что если два из остатков равняться 0? Да, но в таком случае между ними должен стоять некоторый нулевой остаток, скажем, 1. Пусть числа А и С делятся на 3, а В даёт остаток 1. Тогда остатки E и D должны равняться только единицам, иначе три рядом стоящих числа разделятся на 3. Получаем удовлетворяющее условию расположение.
Может ли только один из остатков равняться 0? Пусть А даёт остаток 0. Тогда у В и Е должны быть одинаковые ненулевые остатки, иначе или сумма одной из пар, или всех трёх чисел разделится на 3. Допустим, они равны 1.
Следовательно, ни один из остатков С и D не равен 2. Также они не могут одновременно равняться 1. Значит, один из них равен 0, а другой – 1. Но этот случай с двумя числами, делящимися на 2, мы уже рассмотрели.
Может ли ни одно число не делиться на 3? Нет, т.к. в таком случае найдётся три подряд стоящих одинаковых остатка, в сумме дающих делящееся на 3 число.
Следовательно, ровно 2 числа из пяти должны делиться на 3.