Тільки по графіку можна одразу вказати, при яких значеннях аргументу значення функції додатні
Приклад: Використовуючи графік функції у = х2 – 1, де -3 ≤ х ≤ 2, знайти значення аргументу, при яких функція набуває додатних значень;
Для значень х таких, що -3 < х < -1, точки графіка розташовані вище осі абсцис. Тому функція набуває додатних значень при -3 < х < -1. Так само вище осі абсцис знаходяться точки графіка для 1 < х < 2. Тому при 1 < х < 2 функція знову набуває додатних значень. Отже, при -3 < х < -1 або 1 < х < 2 функція набуває додатних значень.
ответ: 10 .
объяснение:
область определения функции cos - всё множество действительных чисел, а вот множество значений этой функции (вне зависимости, какой аргумент будет записан) - это отрезок от (-1) до (+1) .
при возведении в квадрат все отрицательные числа становятся положительными, поэтому
получили множество значений заданной функции - это сегмент [0,4] .
целые числа из сегмента [0,4] - это 0, 1 , 2 , 3 , 4 .
сложим их (в условии такое ):
0+1+2+3+4=10 .
ответ: 10 .
2)Х(-0,8Х +3,2)=0
Х перше =0 або -0,8Х +3,2 =0
-0,8Х=-3,2
Х=40
4)-4Х^2=-25
Х^2=-25:-4
Х=
Х перше і друге =+- вираз під коренем
6)Х =0