М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alnoskoff
alnoskoff
20.08.2020 05:01 •  Алгебра

Производные, а б в. ответы на 2 фото, но нужно решение.

👇
Ответ:
Акинаки
Акинаки
20.08.2020

1)f(x)=\frac{3}{\sqrt[3]{x} }-6\sqrt[3]{x^{4}}=3x^{-\frac{1}{3}}-6x^{\frac{4}{3}}\\\\f'(x)=3(x^{-\frac{1}{3}})'-6(x^{\frac{4}{3}} )'=3*(-\frac{1}{3}x^{-\frac{4}{3}}) -6* \frac{4}{3}x^{\frac{1}{3}}=-\frac{1}{x^{\frac{4}{3}}}-8x^{\frac{1}{3}}=-\frac{1}{\sqrt[3]{x^{4}}}-8\sqrt[3]{x}\\\\Otvet:\boxed{-\frac{1}{\sqrt[3]{x^{4}}}-8\sqrt[3]{x}}

2)f(x)=e^{3x+2}\\\\f'(x)=(e^{3x+2})'=e^{3x+2}*(3x+2)'=3e^{3x+2}\\\\Otvet:\boxed{3e^{3x+2}}

3)f(x)=x\sqrt{x^{2}-3x+4 }\\\\f'(x)=x'*\sqrt{x^{2}-3x+4 }+x*(\sqrt{x^{2}-3x+4)}=\sqrt{x^{2}-3x+4}+x*\frac{1}{2\sqrt{x^{2}-3x+4}}*(x^{2}-3x+4)'=\sqrt{x^{2} -3x+4}+\frac{x*(2x-3)}{2\sqrt{x^{2}-3x+4}}=\frac{2(x^{2}-3x+4)+x(2x-3)}{2\sqrt{x^{2}-3x+4}}=\frac{2x^{2}-6x+8+2x^{2}-3x}{2\sqrt{x^{2}-3x+4}}=\frac{4x^{2}-9x+8}{2\sqrt{x^{2}-3x+4}}\\\\Otvet:\boxed{\frac{4x^{2}-9x+8}{2\sqrt{x^{2}-3x+4}}}

4,5(9 оценок)
Открыть все ответы
Ответ:
timirshan
timirshan
20.08.2020
1)
2sin(x/2)=3sin²(x/2)
2sin(x/2)-3sin²(x/2)=0
sin(x/2) (2-3sin(x/2))=0

a) sin(x/2)=0
x/2=πk, k∈Z
x=2πk,  k∈Z

b)  2-3sin(x/2)=0
-3sin(x/2)=-2
sin(x/2)=2/3
x/2=(-1)^n * arcsin(2/3)+πk,  k∈Z
x=2*(-1)^n * arcsin(2/3)+2πk,  k∈Z

ответ: 2πk,  k∈Z;
            2*(-1)^k*arcsin(2/3)+2πk, k∈Z.

2)
sin6xcosx+cos6xsinx=0.5
sin(6x+x)=0.5
sin7x=0.5
7x=(-1)^k*(π/6)+πk,  k∈Z
x=(-1)^k*(π/42)+(π/7)*k,  k∈Z

ответ: (-1)^k*(π/42)+(π/7)*k,  k∈Z.

3)
3sinx+4sin(π/2+x)=0
3sinx+4cosx=0
3sin2*( \frac{x}{2} )+4cos2*( \frac{x}{2} )=0 \\ \\ 
3*2sin( \frac{x}{2} )cos( \frac{x}{2} )+4(cos^2( \frac{x}{2} )-sin^2( \frac{x}{2} ))=0 \\ \\ 
-4sin^2( \frac{x}{2} )+6sin( \frac{x}{2} )cos( \frac{x}{2} )+4cos^2( \frac{x}{2} )=0 \\ \\ 
2sin^2( \frac{x}{2} )-3sin( \frac{x}{2} )cos( \frac{x}{2} )+2cos^2( \frac{x}{2} )=0 \\ \\ 
 \frac{2sin^2( \frac{x}{2} )}{cos^2( \frac{x}{2} )}- \frac{3sin( \frac{x}{2} )cos( \frac{x}{2} )}{cos^2( \frac{x}{2} )}+ \frac{2cos^2( \frac{x}{2} )}{cos^2( \frac{x}{2} )}=0
2tg^2( \frac{x}{2} )-3tg( \frac{x}{2} )-2=0 \\ \\ 
y=tg( \frac{x}{2} ) \\ \\ 
2y^2-3y-2=0 \\ 
D=9+4*2*2=25 \\ 
y_{1} =\frac{3-5}{4}=- \frac{2}{4}=- \frac{1}{2} \\ \\ 
y_{2}= \frac{3+5}{4}=2

a) При у=-1/2
tg( \frac{x}{2} )=- \frac{1}{2} \\ 
 \frac{x}{2}=-arctg \frac{1}{2} + \pi k \\ \\ 
x=-2arctg \frac{1}{2}+2 \pi k,
k∈Z;

b)  При у=2
tg( \frac{x}{2} )=2 \\ 
 \frac{x}{2} =arctg2+ \pi k \\ \\ 
x=2arctg2+2 \pi k,
k∈Z.

ответ: -2arctg \frac{1}{2}+2 \pi k,k∈Z;
             2arctg2+2 \pi k,k∈Z.
4,8(70 оценок)
Ответ:
панда267
панда267
20.08.2020
Пусть эти части будут а1, а2, а3, а4.
a1 + a2 + a3 + a4 = a
a1 + n = a2 - n
a1 + n = a3*n
a1 + n = a4/n
Выразим все части через а1
a2 = a1 + 2n
a3 = a1/n + 1
a4 = a1*n + n^2
Подставим в сумму
a1 + a1 + 2n + a1/n + 1 + a1*n + n^2 = a
Умножим все на n
2a1*n + 2n^2 + a1 + n + a1*n^2 + n^3 = a*n
Выделяем а1
a1*(2n + 1 + n^2) = a*n - n^3 - 2n^2 - n
Выделяем полные квадраты
a1*(n + 1)^2 = a*n - n(n + 1)^2
Делим
a1 = a*n/(n+1)^2 - n
Остальные части получаем подстановкой.
a2 = a1 + 2n = a*n/(n+1)^2 + n
a3 = a1/n + 1 = a/(n+1)^2 - 1 + 1 = a/(n+1)^2
a4 = a1*n + n^2 = a*n^2/(n+1)^2 - n^2 + n^2 = a*n^2/(n+1)^2
Для a = 90, n = 2 получаем
a1 = 90*2/3^2 - 2 = 90*2/9 - 2 = 10*2 - 2 = 18
a2 = a1 + 2n = 18 + 4 = 22
a3 = a1/n + 1 = 18/2 + 1 = 9 + 1 = 10
a4 = a1*n + n^2 = 18*2 + 4 = 36 + 4 = 40
ответ: 18, 22, 10, 40
4,4(26 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ