Запишите уравнение прямой, если известен её угловой коэффициент и точка, в которой прямая пересекает ось y. а) R=2\5, A( 0; 0:) б) R=0, A(0; -4;)
формула линейного уравнения
y=Rx +b - пусть будет не k
прямая пересекает ось y. - значит x=0 ; b= y
а) R=2\5, A( 0; 0:)
здесь b = 0
уравнение прямой y = 2/5x +0 ; y=2/5x
прямая проходит через центр координат
б) R=0, A(0; -4;)
здесь b = 4
уравнение прямой y = 0* x +4 ; y= 4
прямая параллельна оси ОХ , проходит через у=4
2) Определите, пересекаются ли данные прямые; если пересекаются, то постройте эти координаты точки пересечения; проверьте результат, подставив найденные координаты в уравнение
формула линейного уравнения
y=kx +b
если уловой коэффициент k будет иметь одинаковое значение, значит параллельны
а)
y=-1\2x+3 k=-1/2
и
y=x-3; k=1
пересекаются
найдем точку пересечения
-1\2x+3 = x-3
3/2 x = 6
x= 4 ; y = x-3 =4-3=1
(4; 1)
проверка
1=-1\2*4+3
1=1 - тождество
и
1=4-3;
1=1 - тождество
б)
y=1\3x+1 k=1/3
и
y=-1\3+3 k=-1/3
пересекаются
найдем точку пересечения
1/3x +1 = -1/3x +3
2/3x = 2
x= 3 ; y =1/3*3 +1 = 2
(3; 2)
проверка
2=1\3*3+1
2=2 - тождество
2=-1\3*3+3
2 =2 - тождество
3) Определите, параллельны или пересекаются прямые: 6x+2y=3 и 3x+y=1.
приведем к виду
y=kx +b
если уловой коэффициент k будет иметь одинаковое значение, значит параллельны
sin α*sin β = (1/2)[cos(α-β) - cos(α+β)].
sin(10x)sin(2x)=sin(8x)sin(4x) (1/2)[cos(10x-2x) - cos(10x+2x)] = (1/2)[cos(8x-4x) - cos(8x+4x)]
(1/2)[cos(8x) - cos(12x)] = (1/2)[cos(4x) - cos(12x)]
После сокращения получаем:
cos(8x) = cos(4x)
cos(8x) = 2cos²(4x) - 1
Подставив вместо cos(8x) равное ему 2cos²(4x) - 1, получаем квадратное уравнение: 2cos²(4x) - cos(4x) - 1 = 0.
Если заменить cos(4x) = у, получим 2у² - у - 1 = 0.
Квадратное уравнение, решаем относительно y:
Ищем дискриминант:D=(-1)^2-4*2*(-1)=1-4*2*(-1)=1-8*(-1)=1-(-8)=1+8=9;
Дискриминант больше 0, уравнение имеет 2 корня:
y_1=(√9-(-1))/(2*2)=(3-(-1))/(2*2)=(3+1)/(2*2)=4/(2*2)=4/4=1;
y_2=(-√9-(-1))/(2*2)=(-3-(-1))/(2*2)=(-3+1)/(2*2)=-2/(2*2)=-2/4=-0,5.
Обратная замена: cos(4x) = 1
4х = Arc cos 1 = 2πn
x₁ = 2πn / 4 = πn / 2
cos(4x) = -0,5
4x = Arc cos (-0,5) =