Объяснение:
0,5×2а×sin(0,5a)×a×cos(0,5a)=a²0,5×2×sin(0,5a)×cos(0,5a)=a²×0,5×sin(2*0,5a)=a²×0,5×sina
sin2a=2sina×cosa
sin(0,5a)×cos(0,5a)=2*sin(0,5a)×cos(0,5a)/2=sin(2*0,5a)/2= (sina)/2
Надо применить вспомагательного аргумента.
Разделить обе части ур-ия на кв.корень из суммы квадратов коэффициентов при синусе и косинусе:√(1+3)=√4=2
1/2*cosx-√3|2*sinx=1|2
так как 1|2=sinπ/6, a √3|2=cosπ/6, то в левой части получится формула синуса разности
sinπ/6*cosx-cosπ/6*sinx=1|2
sin(π/6-x)=1/2
Тогда π/6-x=(-1)^n *arcsin1|2+πn,n∈Z
Отсюда x=π/6-(-1)^n *π/6+πn,n∈Z,
Учитывая,что [-(-1)^n]=(-1)^(n+1),имеем x=π/6* (1+(-1)^(n+1)) +πn,n∈Z
Можно было, конечно, представить 1/2=cosπ/3 и √3/2=sinπ/3, тогда получили бы формулу косинус суммы. Но там в ответе надо ставить плюс,минус, а здесь это не набирается.Вообще говоря два варианта ответа. Но они на вид разные, а углы одни и те же. В тригонометрии ответы всегда можно с формул свести к одному виду.
1. а) Х⁸+Х⁴-2=(Х⁴+2)*(Х⁴-1)=(Х⁴+2)*(Х²+1)*(Х²-1)=(Х⁴+2)*(Х²+1)*(Х+1)*(Х-1)
б) А⁵-А²-А-1=(А⁵-А)-(А²+1)=А*(А²-1)*(А²+1)-(А²+1)=(А²+1)*(А³-А-1)
2. А²-1=(А-1)*(А+1)
Из трех последовательных чисел одно делится на 3. Поскольку А на 3 не делится, то делится либо А-1, либо А+1.
3. Если домножить на 1, точнее на 2 - 1, то получил последовательность разностей квадратов, в результате чего получаем 2⁶⁴-1.
4. Поскольку 3 * Х делится на 3, 7 при делении на 3 дает в остатке 1, а 23 дает в остатке 2, то Y = 2 , следовательно, Х = 3
При упрощении была применена формула синуса двойного угла :