Ну короче начинаем. Уравнения с параметром решаются методом перебора возможных случаев.
1)Сложность у нас вызывает то, что параметр находится при переменной x², значит, утверждать о том. что это уравнение квадратное, нельзя.
Тогда предполагаем, если t+1 = 0, то уравнение не является квадратным. Отсюда следует, что t = -1
При этом параметре, уравнение является линейным. которое уже по определению имеет один корень.
2)рассмотрю случай, когда t+1 ≠0 Тогда данное уравнение по логике вещей является квадратным. По условию нам нужно. чтобы уравнение имело один корень. А квадратное уравнение имеет один корень, если его дискриминант = 0. Выделя дискриминант из этого уравнения. Выпишу сначала значения коэффициентов:
a = t+1 ; b = t;c = -1
D = b² - 4ac = t² + 4(t+1)
D = 0 t² + 4t+4 = 0 - надо решить квадратное уравнение
По теореме Виета нахожу его корни:
t1 = -2;t2 = -2
Значит, при t = -2 данное уравнение также будет иметь один корень.
3)У нас есть ещё один случай, когда t = 0, так как второй коэффициент его содержит.
Тогда получим уравнение x² - 1 = 0, оно также имеет 2 корня. Нам это значение не подходит по условию. Значит, уравнение с параметром имеет один корень при t = -1; t = -2. Задача решена
Нам нужно составить линейную систему уравнений вида
Вместо коэффициентов a,b,c,d подставляем какие-то числа, которые нам в голову придут, чтобы вычислить e и f подставим ещё x,y из задания
a)
Пусть
Получаем систему
Решим её
Решение действительно как в задании, значит, все верно сделано.
Аналогично со второй системой
б) пусть
Система:
Решение совпадает с тем, что указано в задании, все верно.
P.S. по поводу придумывания коэффициентов.
1. Они не должны быть все нулевые
2. Любое из двух уравнений системы не должно выводиться из другого уравнения системы. Пример:
Видно, что второе уравнение - первое уравнение, умноженное на 2. Такого тоже не должно быть. Вообще такие уравнения являются линейно зависимыми.
То есть не все числа подойдут, небольшое ограничение есть)