1) введем обозначение х^2=y.y>=0 тогда уравнение примет вид y^2-10y+9=0. Решаем. По теореме Виета у1+у2=10
у1*у2=9
у1=1, у2=9
Находим х. еслиу=x^2, x1=1 x2=3 так как у>=0
2) Приводим к единому знаменателю(25-x^2)=(5-x)(5+x).Получаем
((10-(5-x)+x(5+x))/(25-x^2)=0
(x^2+6x+5)/(25-x^2)=0
Решаем числитель.x^2+6x+5=0 x1+x2=-6
x1*x2=-5
x1=-1, x2=-5
Так как знаменатель не может быть равен 0 следует, что х не может быть равно -5 Значит х=-1
Сначала без х:
Площадь 1-го отреза: 18м·0,75м = 13,5м²
Площадь одной наволочки: 13,5м²:15 = 0,9м²
Площадь 22 наволочек: 0,9м²·22 = 19,8м²
Длина 2-го отреза: 19,8м²:1,2м = 16,5м
Теперь с х:
Пусть х - длина 2-го отреза, тогда площадь 2-го отреза 1,2х. Площадь одной наволочки: 1,2х: 22. Площадь наволочки, получаемая из 1-го отреза записывается выражением: 18·0,75:15.
Уравнение:
1,2х:22 = 18·0,75:15
По основному свойству пропорции:
1,2х·15 = 22 ·18·0,75
18х = 18·16,5
х = 16,5
ответ: длина 2-го отреза 16,5м
Пусть х - количество трехмеcтных, а у = двухместных. Известно, что всего 7 палаток, тогда х + у = 7. Всего было 17 туристов, 3x туристов разместилось в трехместных палатках и 2у - в двухместных. 3х+2у=17. Составим систему уравнений
х + у = 7
3х + 2у = 17
у = 7 - х
Подставим значение у во второе уравнение
3х + 2(7-х) = 17
3х + 14 - 2х = 17
х = 17- 14
х = 3
Следовтельно, трехместных палаток было 3, а двухместных 7-3 = 4
ответ: 3 трехместных и 4 двухместных палатки.
Можно сделать и уравнение с одним неизвестным.
Пусть было х двуместных палаток. Тогда трехместных (7-х). Известно, что всего было 17 туристов, тогда в двухместных палатках было 2х туристов, а в трехместных 3(7-х). Имеем уравнение
2х + 3(7-х)=17
2х + 21 - 3х = 12
-х = 17 - 21
-х = -4
х = 4
ответ: 4 двухместные палатки.
файл